

1

Table of Contents
Preface

The Svelte Handbook

Conclusion

2

Preface
The Svelte Handbook follows the 80/20 rule: learn in 20% of the time the
80% of a topic.

In particular, the goal is to get you up to speed quickly with Svelte.

This book is written by Flavio. I publish programming tutorials on my
blog flaviocopes.com and I organize a yearly bootcamp at bootcamp.dev.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://bootcamp.dev/
https://twitter.com/flaviocopes

3

The Svelte Handbook
1. Introduction to Svelte

1.1. How to get started with Svelte
2. Svelte Components

2.1. Importing the component in other components
2.2. Exporting specific functions from a component

3. Handling State in Svelte
4. Svelte Reactivity
5. Svelte Props
6. Cross-component State Management in Svelte

6.1. Passing state around using props
6.2. The context API
6.3. Using Svelte stores
6.4. Svelte Readable Stores
6.5. Svelte Derived Stores

7. Slots
8. Svelte Lifecycle events
9. Svelte Bindings

9.1. bind:value
9.2. Checkboxes and radio buttons
9.3. Select fields
9.4. Other bindings
9.5. Read-only bindings
9.6. Get a reference to the HTML element in JavaScript
9.7. Binding components props

10. Conditional Logic in Templates
11. Looping in Svelte Templates
12. Promises in Svelte Templates
13. Working with Events in Svelte

13.1. Listening to DOM events
13.2. Creating your events in components

14. Where To Go From Here

4

1. Introduction to Svelte
Svelte is an exciting Web frontend framework that you can use to build Web
applications.

If you're just starting out, Svelte is a great choice as your first frontend
framework.

If you are already experienced in React, Vue.js, Angular or another frontend
frameworks you will be pleasantly surprised by Svelte.

Compared to React, Vue, Angular and other frameworks, an app built using
Svelte is compiled beforehand so you don't have to serve the whole
framework to every one of your site visitors.

As a result, the fruition of the experience is smoother, consumes less
bandwidth, and everything feels faster and more lightweight.

At deployment, Svelte disappears and all you get is plain (and fast!)
JavaScript.

This is just the tip of the iceberg. Let's get into it!

1.1. How to get started with Svelte

To use Svelte, you need to have Node.js installed because all the tooling we're
going to use is based on Node.

Make sure you also check out the Node.js Handbook!

One little tip I have is that the Svelte website provides a very cool
"playground" to test out Svelte at https://svelte.dev/repl.

It's pretty cool to test small Svelte apps and to experiment with things.

With the terminal, go into the folder where you usually keep your code, for
example dev folder in your home.

Run this command on your computer:

https://flaviocopes.com/book/node/
https://svelte.dev/repl

5

npm create vite@latest helloworld -- --template svelte

This sets up everything you need to get started with your first Svelte
application. I called it helloworld so you will see a folder with that name.

Go into that folder with cd helloworld and then run

npm install

and when this ends:

npm run dev

This runs our new Svelte site in development mode, starting the app on
localhost on port 5173:

If you point your browser there, you'll see the sample project showing up:

6

You're now ready to open the code in your favorite editor, for example VS
Code.

You can do that running code . in the folder, if you've installed the The
Visual Studio Code command-line interface.

As soon as you open the project in the the editor, VS Code will prompt you to
install the Svelte for VS Code extension (if it doesn't, go to the extensions
panel and search it):

https://code.visualstudio.com/docs/editor/command-line
https://marketplace.visualstudio.com/items?itemName=svelte.svelte-vscode

7

Install it, as it provides the code highlighter and other features:

Now back to the project!

8

Open the src folder, you will see a few files in there. The main one, pun
intended, is main.js , where the Svelte application is set up:

This file is the entry point and initializes the main App component, which is
defined in App.svelte :

9

<script>
 import svelteLogo from './assets/svelte.svg'
 import Counter from './lib/Counter.svelte'
</script>

<main>
 <div>

 </div>
 <h1>Vite + Svelte</h1>

 <div class="card">
 <Counter />
 </div>

 <p>
 Check out
 <a href="https://github.com/sveltejs/kit#readme" target="_blank"
 >SvelteKit, the official Svelte app framework powered by Vite!
 </p>

 <p class="read-the-docs">Click on the Vite and Svelte logos to learn mor
</main>

<style>
 .logo {
 height: 6em;
 padding: 1.5em;
 will-change: filter;
 }
 .logo:hover {
 filter: drop-shadow(0 0 2em #646cffaa);
 }
 .logo.svelte:hover {
 filter: drop-shadow(0 0 2em #ff3e00aa);
 }
 .read-the-docs {
 color: #888;

10

See, we have 3 main sections:

<script></script>

<main></main>

<style></style>

This is what we call a single file component, a single file that determines
all about our component:

the markup (the HTML)
the behavior (the JavaScript)
the style (the CSS)

This structure will be the base for all your Svelte components.

2. Svelte Components
Modern Web development is very much focused on components, and Svelte
is no different.

What is a component? A component is an atomic part of the application that
is self-contained and optionally references other components to compose its
output.

In other words, it's an atomic part of the application.

A form can be a component.

An input element can be a component.

The whole application is a component.

Svelte components contain all that's needed to render a piece of the UI.

 }
</style>

11

Every Svelte component is declared in a .svelte file, and in there you'll find
the content (markup), the behavior (JavaScript), and the presentation (CSS)
without having to define separate files.

Which is a good way to define a piece of the UI because you don't need to
search for the items that affect the same element across various files.

Here's a sample component, which we'll store in a file called Dog.svelte :

<script>
 export let name
</script>

<style>
 h1 {
 color: purple;
 }
</style>

<h1>The dog name is {name}!</h1>

JavaScript code must be put in the script tag.

The CSS you have in the style tag is scoped to the component and does
not "leak" outside.

If another component has an h1 tag, this style will not affect that.

This is very handy when reusing components you already wrote for other
applications, for example, or when you include Open Source libraries
published by other people.

For example you can include a date picker component built by someone else
and none of the stylings of the component will affect the rest of the
application.

And in the same way, none of the CSS you wrote will modify the look of the
date picker.

12

2.1. Importing the component in other
components

A component can be used by other components.

Other components can now import the Dog component we wrote in their
code.

For example here's a House component:

<script>
 import Dog from './Dog.svelte'
</script>

You can now import and use the Dog component, as if it was an HTML tag:

<script>
 import Dog from './Dog.svelte'
</script>

<Dog />

2.2. Exporting specific functions from a
component

As you saw above, to export the component we didn't have to do anything,
because the component itself is the default export.

What if you want to export something other than the component markup and
its associated and built-in functionality?

You must write all the functions you want to export from a special script
tag with the context="module" attribute.

Here's an example. Say you have a Button component in Button.svelte :

<button>A button</button>

13

and you want to provide other components the ability to change the color of
the button.

A better solution for this use case is to use props, which is something
we'll talk about in the next chapter. But stick with me for this example

You can provide a function, called changeColor .

You write and export it in this special script tag:

<script context="module">
 export function changeColor() {
 //...logic to change color..
 }
</script>

<button>A button</button>

Note that you can have another "normal" script tag, in the component.

Now other components can import Button, which is the default export, and
the changeColor function too:

<script>
 import Button, { changeColor } from './Button.svelte'
</script>

Now that is probably a silly example, but knowing you can use this
functionality can be quite helpful.

3. Handling State in Svelte
Every component, in addition to defining the markup, the CSS and the
JavaScript logic, can host its own state.

What is state? State is any data that's needed to make the component render
what it's rendering.

14

For example, if a form input field has the string "test" written into it, there'll
be a variable somewhere holding this value. That's the state of the input field.

The field is selected? A variable somewhere will register this fact. And so on.

State is defined in the script part of a component:

<script>
 let count = 0
</script>

To update the value of a state variable all you need is an assignment. A
simple JavaScript assignment, for example using the = operator.

Say you have a count variable. You can increment that using, simply, count
= count + 1 , or even count++ :

<script>
 let count = 0

 const incrementCount = () => {
 count++
 }
</script>

{count} <button on:click="{incrementCount}">+1</button>

I find this one of the refreshing parts of Svelte, as in React for example you'd
have to use the useState() hook, and use a setter function any time you
want to update the value of the state variable.

This is more intuitive and much more "JavaScript-like" syntax.

We need to be aware of one thing, which is learned pretty quickly: we must
also make an assignment when changing the value.

Svelte always wants an assignment, otherwise it might not recognize that the
state changed.

15

For simple values like strings and numbers, that's mostly a given, because all
methods on String return new strings, and same for numbers - they are
immutable.

But for arrays? We can't use methods that alter the array. Like push() ,
 pop() , shift() , splice() ... because there's no assignment. They change
the inner data structure, but Svelte can't detect that.

Well, you can still use them, but after you've done your operation, you can
use a "trick" and reassign the variable to itself, like this:

let list = [1, 2, 3]
list.push(4)
list = list

It's is a bit counter-intuitive, compared to what I just said before, but it's a
quirk you'll remember with experience.

Of course you could use alternatives that avoid you this situation, for
example instead of using Array.push() you can use the spread operator to
add an item:

let list = [1, 2, 3]
list = [...list, 4]

4. Svelte Reactivity
In Svelte you can listen for changes in the component state, and update other
variables.

For example if you have a count variable:

<script>
 let count = 0
</script>

16

and you update it by clicking a button:

<script>
 let count = 0

 const incrementCount = () => {
 count = count + 1
 }
</script>

{count} <button on:click="{incrementCount}">+1</button>

You can listen for changes on count using the special syntax $: which
defines a new block that Svelte will re-run when any variable referenced into
it changes.

Here's an example:

<script>
 let count = 0

 const incrementCount = () => {
 count = count + 1
 }

 $: console.log(`${count}`)
</script>

{count} <button on:click="{incrementCount}">+1</button>

I used the block:

$: console.log(`${count}`)

You can write more than one of them:

17

<script>
 $: console.log(`the count is ${count}`)
 $: console.log(`double the count is ${count * 2}`)
</script>

And you can also add a block (opening and closing curly brackets {}) to
group more than one statement:

<script>
 $: {
 console.log(`the count is ${count}`)
 console.log(`double the count is ${count * 2}`)
 }
</script>

I used a console.log() call in there, but you can update other variables too:

<script>
 let count = 0
 let double = 0

 $: {
 console.log(`the count is ${count}`)
 double = count * 2
 console.log(`double the count is ${double}`)
 }
</script>

5. Svelte Props
You can import a Svelte component into any other component using the
syntax import name from 'path' , like this:

<script>
 import SignupForm from './SignupForm.svelte'
</script>

18

The path is relative to the current component path. ./ means "this
same folder". You'd use ../ to go back one folder, and so on.

Once you do so, you can use the newly imported component in the markup,
like an HTML tag:

<SignupForm />

In this way, you are forming a parent/child relationship between the two
components: the one that imports, and the one that is imported.

Often you want to have the parent component pass data to the child
component.

You can do so using props. Props behave similarly to attributes in plain
HTML, and they are a one-way form of communication.

In this example we pass the disabled prop, passing the JavaScript value
 true to it:

<SignupForm disabled="{true}" />

In the SignupForm component, you need to export the disabled prop, in
this way:

<script>
 export let disabled
</script>

This is the way you express the fact that the prop is exposed to parent
components.

When using the component, you can pass a variable instead of a value, to
change it dynamically:

19

<script>
 import SignupForm from './SignupForm.svelte'
 let disabled = true
</script>

<SignupForm {disabled} />

Note I used {disabled} as a handy shorthand form for disabled=
{disabled}

When the disabled variable value changes, the child component will be
updated with the new prop value. Example:

<script>
 import SignupForm from './SignupForm.svelte'
 let disabled = true
 setTimeout(() => {
 disabled = false
 }, 2000)
</script>

<SignupForm {disabled} />

6. Cross-component State
Management in Svelte
We've already seen how Svelte makes handling the state of a single
component very easy.

But how do we pass state around across components?

6.1. Passing state around using props

The first strategy is common to other UI frameworks and it's passing state
around using props, lifting the state up.

20

When a component needs to share data with another, the state can be moved
up in the components tree until there's a common parent to those
components.

The state needs to be passed down until it reaches all the components that
need this state information.

This is done using props, and it's a technique that I think is the best as it's
simple.

6.2. The context API

However, there are cases where props are not practical. Perhaps 2
components are so distant in the components tree that we'd have to move
state up to the top-level component.

In this case, another technique can be used and it's called context API, and
it's ideal when you want to let multiple components communicate with
descendants, but you don't want to pass props around.

The context API is provided by 2 functions which are provided by the
 svelte package: getContext and setContext .

You set an object in the context, associating it to a key:

<script>
 import { setContext } from 'svelte'

 const someObject = {}

 setContext('someKey', someObject)
</script>

In another component you can use getContext to retrieve the object
assigned to a key:

21

<script>
 import { getContext } from 'svelte'

 const someObject = getContext('someKey')
</script>

You can only use getContext to retrieve a key either in the component that
used setContext or in one of its descendants.

If you want to let two components living in 2 different component trees
communicate there's another tool for us: stores.

6.3. Using Svelte stores

Svelte stores are a great tool to handle your app state when components need
to talk to each other without passing props around too much.

You must first import writable from svelte/store :

import { writable } from 'svelte/store'

and create a store variable using the writable() function, passing the
default value as the first argument:

const username = writable('Guest')

This can be put into a separate file which you can import into multiple
components, for example, called store.js (it's not a component, so it can be
in a .js file instead of .svelte):

import { writable } from 'svelte/store'
export const username = writable('Guest')

Any other component now loading this file can access the store:

22

<script>
 import { username } from './store.js'
</script>

Now the value of this variable can be set to a new value using set() , passing
the new value as the first argument:

username.set('new username')

And it can be updated using the update() function, which differs from
 set() because you don't just pass the new value to it - you run a callback
function that is passed the current value as its argument:

const newUsername = 'new username!'
username.update((existing) => newUsername)

You can add more logic here:

username.update((existing) => {
 console.log(`Updating username from ${existing} to ${newUsername}`)
 return newUsername
})

To get the value of the store variable once, you can use the get() function
exported by svelte/store :

import { writable, get } from 'svelte/store'
export const username = writable('Guest')
get(username) //'Guest'

To create a reactive variable that's updated whenever the store value changes
instead, you can prepend the store variable using $ (in this example
 $username). Using that will make the component re-render whenever the
stored value changes.

23

Svelte considers $ to be a reserved value and will prevent you to use it
for things that are not related to stores values (which might lead to
confusion), so if you are used to prepending DOM references using $,
don't do it in Svelte.

Another option, best suited if you need to execute some logic when the
variable changes, is to use the subscribe() method of username :

username.subscribe((newValue) => {
 console.log(newValue)
})

In addition to writable stores, Svelte provides 2 special kinds of stores:
readable stores and derived stores.

6.4. Svelte Readable Stores

Readable stores are special because they can't be updated from the outside -
there's no set() or update() method. Instead, once you set the initial
state, they can't be modified from the outside.

The official Svelte docs show an interesting example using a timer to update a
date. I can think of setting up a timer to fetch a resource from the network,
perform an API call, get data from the filesystem (using a local Node.js
server) or anything else that can be set up autonomously.

In this case instead of using writable() to initialize the store variable, we
use readable() :

import { readable } from 'svelte/store'
export const count = readable(0)

You can provide a function after the default value, that will be responsible for
updating it. This function receives the set function to modify the value:

24

<script>
 import { readable } from 'svelte/store'
 export const count = readable(0, (set) => {
 setTimeout(() => {
 set(1)
 }, 1000)
 })
</script>

In this case, we update the value from 0 to 1 after 1 second.

You can setup an interval in this function, too:

import { readable, get } from 'svelte/store'
export const count = readable(0, (set) => {
 setInterval(() => {
 set(get(count) + 1)
 }, 1000)
})

You can use this in another component like this:

<script>
 import { count } from './store.js'
</script>

{$count}

6.5. Svelte Derived Stores

A derived store allows you to create a new store value that depends on the
value of an existing store.

You can do so using the derived() function exported by svelte/store
which takes as its first parameter the existing store value, and as a second
parameter a function which receives that store value as its first parameter:

25

import { writable, derived } from 'svelte/store'

export const username = writable('Guest')

export const welcomeMessage = derived(username, ($username) => {
 return `Welcome ${$username}`
})

<script>
 import { username, welcomeMessage } from './store.js'
</script>

{$username} {$welcomeMessage}

7. Slots
Slots are a handy way to let you define components that can be composed
together.

And vice versa, depending on your point of view, slots are a handy way to
configure a component you are importing.

Here's how they work.

In a component you can define a slot using the <slot /> (or <slot>

</slot>) syntax.

Here's a Button.svelte component that simply prints a <button> HTML
tag:

<button><slot /></button>

For React developers, this is basically the same as <button>
{props.children}</button>

Any component importing it can define content that is going to be put into
the slot by adding it into the component's opening and closing tags:

26

<script>
 import Button from './Button.svelte'
</script>

<button>Insert this into the slot</button>

You can define a default, which is used if the slot is not filled:

<button>
 <slot> Default text for the button </slot>
</button>

You can have more than one slot in a component, and you can distinguish
one from the other using named slots. The single unnamed slot will be the
default one:

<slot name="before" />
<button>
 <slot />
</button>
<slot name="after" />

Here's how you would use it:

<script>
 import Button from './Button.svelte'
</script>

<button>
 Insert this into the slot
 <p slot="before">Add this before</p>
 <p slot="after">Add this after</p>
</button>

And this would render the following to the DOM:

27

<p slot="before">Add this before</p>
<button>Insert this into the slot</button>
<p slot="after">Add this after</p>

8. Svelte Lifecycle events
Every component in Svelte fires several lifecycle events that we can hook on,
to help us implement the functionality we have in mind.

In particular, we have

 onMount fired after the component is rendered
 onDestroy fired after the component is destroyed
 beforeUpdate fired before the DOM is updated
 afterUpdate fired after the DOM is updated

We can schedule functions to happen when these events are fired by Svelte.

We don't have access to any of those methods by default, but we need to
import them from the svelte package:

A common scenario for onMount is to fetch data from other sources.

Here's a sample usage of onMount :

<script>
 import { onMount } from 'svelte'

 onMount(async () => {
 //do something on mount
 })
</script>

<script>
 import { onMount, onDestroy, beforeUpdate, afterUpdate } from 'svelte'
</script>

28

 onDestroy allows us to clean up data or stop any operation we might have
started at the component initialization, like timers or scheduled periodic
functions using setInterval .

One particular thing to notice is that if we return a function from onMount ,
that serves the same functionality of onDestroy - it's run when the
component is destroyed:

<script>
 import { onMount } from 'svelte'

 onMount(async () => {
 //do something on mount

 return () => {
 //do something on destroy
 }
 })
</script>

Here's a practical example that sets a periodic function to run on mount, and
removes it on destroy:

<script>
 import { onMount } from 'svelte'

 onMount(async () => {
 const interval = setInterval(() => {
 console.log('hey, just checking!')
 }, 1000)

 return () => {
 clearInterval(interval)
 }
 })
</script>

9. Svelte Bindings

29

Using Svelte you can create a two-way binding between data and the UI.

Many other Web frameworks can provide two-way bindings, it's a very
common UI design pattern.

They are especially useful with forms.

9.1. bind:value

Let's start with the most common form of binding you'll often use, which you
can apply using bind:value . You take a variable from the component state,
and you bind it to a form field:

<script>
 let name = ''
</script>

<input bind:value="{name}" />

Now if name changes the input field will update its value. And the opposite is
true, as well: if the form is updated by the user, the name variable value
changes.

Just be aware that the variable must be defined using let/var and not
 const , otherwise it can't be updated by Svelte, as const defines a
variable with a value that can't be reassigned.

 bind:value works on all flavors of input fields (type="number" ,
 type="email" and so on), but it also works for other kind of fields, like
 textarea and select (more on select later).

9.2. Checkboxes and radio buttons

Checkboxes and radio inputs (input elements with type="checkbox" or
 type="radio") allow those 3 bindings:

 bind:checked

 bind:group

30

 bind:indeterminate

 bind:checked allows us to bind a value to the checked state of the element:

<script>
 let isChecked
</script>

<input type="checkbox" bind:checked="{isChecked}" />

 bind:group is handy with checkboxes and radio inputs, because those are
very often used in groups. Using bind:group you can associate a JavaScript
array to a list of checkboxes, and have it populated based on the choices
made by the user.

Here's an example. The goodDogs array populates based on the checkboxes I
tick:

See the example

<script>
 let goodDogs = []
 let dogs = ['Roger', 'Syd']
</script>

<h2>Who's a good dog?</h2>

 {#each dogs as dog}
 {dog} <input type="checkbox" bind:group="{goodDogs}" value="{dog}" /
 {/each}

<h2>Good dogs according to me:</h2>

 {#each goodDogs as dog}
 {dog}
 {/each}

https://svelte.dev/repl/059c1b5edffc4b058ad36301dd7a1a58

31

 bind:indeterminate allows us to bind to the indeterminate state of an
element (if you want to learn more head to https://css-
tricks.com/indeterminate-checkboxes/)

9.3. Select fields

 bind:value also works for the select form field to get the selected value
automatically assigned to the value of a variable:

<script>
 let selected
</script>

<select bind:value="{selected}">
 <option value="1">1</option>
 <option value="2">2</option>
 <option value="3">3</option>
</select>

{selected}

The cool thing is that if you generate options dynamically from an array of
objects, the selected option is now an object, not a string:

<script>
 let selected

 const dogs = [{ name: 'Roger' }, { name: 'Syd' }]
</script>

<h2>List of possible good dogs:</h2>
<select bind:value="{selected}">
 {#each dogs as dog}
 <option value="{dog}">{dog.name}</option>
 {/each}
</select>

{#if selected}
<h2>Dog selected: {selected.name}</h2>
{/if}

https://css-tricks.com/indeterminate-checkboxes/

32

See this example

 select also allows the multiple attribute:

<script>
 let selected = []

 const goodDogs = [{ name: 'Roger' }, { name: 'Syd' }]
</script>

<h2>List of possible good dogs:</h2>
<select multiple bind:value="{selected}">
 {#each goodDogs as goodDog}
 <option value="{goodDog}">{goodDog.name}</option>
 {/each}
</select>

{#if selected.length}
<h2>Good dog selected:</h2>

 {#each selected as dog}
 {dog.name}
 {/each}

{/if}

See this example

9.4. Other bindings

Depending on the HTML tag you are working on, you can apply different
kinds of bindings.

 bind:files is a binding valid on type="file" input elements, to bind the
list of selected files.

The details HTML element allows the use of bind:open to bind its
open/close value.

https://svelte.dev/repl/7e06f9b7becd4c57880db5ed184ea0f3
https://svelte.dev/repl/b003248e87f04919a2f9fed63dbdab8c

33

The audio and video media HTML tags allow to bind several of their
properties: currentTime , duration , paused , buffered , seekable ,
 played , volume , playbackRate .

 textContent and innerHTML can be bound on contenteditable fields.

All things very useful for those specific HTML elements.

9.5. Read-only bindings

 offsetWidth , offsetHeight , clientWidth , clientHeight can be bound,
read only, on any block level HTML element, excluding void tags (like br)
and elements that are set to be inline (display: inline).

9.6. Get a reference to the HTML element in
JavaScript

 bind:this is a special kind of binding that allows you to get a reference to an
HTML element and bind it to a JavaScript variable:

<script>
 let myInputField
</script>

<input bind:this="{myInputField}" />

This is handy when you need to apply logic to elements after you mount
them, for example, using the onMount() lifecycle event callback.

9.7. Binding components props

Using bind: you can bind a value to any prop that a component exposes.

Say you have a Car.svelte component:

34

<script>
export let inMovement = false
</script>

<button on:click={() => inMovement = true }>Start car</button>

You can import the component and bind the inMovement prop:

<script>
 import Car from './Car.svelte'

 let carInMovement
</script>

<Car bind:inMovement="{carInMovement}" />

{carInMovement}

This can allow for interesting scenarios.

10. Conditional Logic in Templates
In a Svelte component, when it comes to rendering HTML you can work with
some specific syntax to craft the UI you need at every stage of the application
lifecycle.

In particular, we'll now explore conditional structures.

The problem is this: you want to be able to look at a value/expression, and if
that points to a true value do something if that points to a false value then do
something else.

Svelte provides us a very powerful set of control structures.

The first is if:

35

{#if isRed}
<p>Red</p>
{/if}

There is an opening {#if} and an ending {/if} . The opening markup
checks for a value or statement to be truthy. In this case isRed can be a
boolean with a true value:

<script>
 let isRed = true
</script>

An empty string is falsy, but a string with some content is truthy.

0 is falsy, but a number > 0 is truthy.

The boolean value true is truthy, of course, and false is falsy.

If the opening markup is not satisfied (a falsy value is provided), then
nothing happens.

To do something else if that's not satisfied, we use the appropriately called
 else statement:

{#if isRed}
<p>Red</p>
{:else}
<p>Not red</p>
{/if}

Either the first block is rendered in the template or the second one. There's
no other option.

You can use any JavaScript expression into the if block condition, so you
can negate an option using the ! operator:

36

{#if !isRed}
<p>Not red</p>
{:else}
<p>Red</p>
{/if}

Now, inside the else you might want to check for an additional condition.
That's where the {:else if somethingElse} syntax comes along:

{#if isRed}
<p>Red</p>
{:else if isGreen}
<p>Green</p>
{:else}
<p>Not red nor green</p>
{/if}

You can have many of these blocks, not just one, and you can nest them.
Here's a more complex example:

{#if isRed}
<p>Red</p>
{:else if isGreen}
<p>Green</p>
{:else if isBlue}
<p>It is blue</p>
{:else} {#if isDog}
<p>It is a dog</p>
{/if} {/if}

11. Looping in Svelte Templates
In Svelte templates you can create a loop using the {#each}{/each} syntax:

37

<script>
 let dogs = ['Roger', 'Syd']
</script>

{#each dogs as dog}
{dog}
{/each}

If you are familiar with other frameworks that use templates, it's a very
similar syntax.

You can get the index of the iteration using:

<script>
 let dogs = ['Roger', 'Syd']
</script>

{#each dogs as dog, index}
{index}: {dog}
{/each}

(indexes start at 0)

When dynamically editing the lists removing and adding elements, you
should always pass an identifier in lists, to prevent issues.

You do so using this syntax:

<script>
 let dogs = ['Roger', 'Syd']
</script>

{#each dogs as dog (dog)}
{dog}
{/each}

<!-- with the index -->
{#each dogs as dog, index (dog)}
{dog}
{/each}

38

You can pass an object, too, but if your list has a unique identifier for each
element, it's best to use it:

<script>
 let dogs = [
 { id: 1, name: 'Roger' },
 { id: 2, name: 'Syd' },
]
</script>

{#each dogs as dog (dog.id)}
{dog.name}
{/each}

<!-- with the index -->
{#each dogs as dog, index (dog.id)}
{dog.name}
{/each}

12. Promises in Svelte Templates
Promises are an awesome tool we have at our disposal to work with
asynchronous events in JavaScript.

The relatively recent introduction of the await syntax in ES2017 made using
promises even simpler.

Svelte provides us the {#await} syntax in templates to directly work with
promises at the template level.

We can wait for promises to resolve, and define a different UI for the various
states of a promise: unresolved, resolved and rejected.

Here's how it works. We define a promise, and using the {#await} block we
wait for it to resolve.

Once the promise resolves, the result is passed to the {:then} block:

39

You can detect a promise rejection by adding a {:catch} block:

{#await fetchImage}
<p>...waiting</p>
{:then data}

{:catch error}
<p>An error occurred!</p>
{/await}

Run the example

13. Working with Events in Svelte

13.1. Listening to DOM events

In Svelte you can define a listener for a DOM event directly in the template,
using the on:<event> syntax.

For example, to listen to the click event, you will pass a function to the
 on:click attribute.

To listen to the onmousemove event, you'll pass a function to the
 on:mousemove attribute.

<script>
 const fetchImage = (async () => {
 const response = await fetch('https://dog.ceo/api/breeds/image/random
 return await response.json()
 })()
</script>

{#await fetchImage}
<p>...waiting</p>
{:then data}

{/await}

https://svelte.dev/repl/70e61d6cc91345cdaca2db9b7077a941

40

Here's an example with the handling function defined inline:

<button
 on:click={() => {
 alert('clicked')
 }}
>
 Click me
</button>

and here's another example with the handling function defined in the
 script section of the component:

<script>
const doSomething = () => {
 alert('clicked')
}
</script>

<button on:click={doSomething}>Click me</button>

I prefer inline when the code is not too verbose. If it's just 2-3 lines, for
example, otherwise I'd move that up in the script section.

Svelte passes the event handler as the argument of the function, which is
handy if you need to stop propagation or to reference something in the Event
object:

<script>
const doSomething = event => {
 console.log(event)
 alert('clicked')
}
</script>

<button on:click={doSomething}>Click me</button>

https://flaviocopes.com/javascript-events/#the-event-object

41

Now, I mentioned "stop propagation". That's a very common thing to do, to
stop form submit events for example. Svelte provides us modifiers, a way to
apply it directly without manually doing it. stopPropagation and
 preventDefault are the 2 modifiers you'll use the most, I think.

You apply a modifier like this: <button
on:click|stopPropagation|preventDefault={doSomething}>Click me</button>

There are other modifiers, which are more niche. capture enables capturing
events instead of bubbling, once only fires the event once, self only fires
the event if the target of the event is this object (removing it from the
bubbling/capturing hierarchy).

13.2. Creating your events in components

What's interesting is that we can create custom events in components, and
use the same syntax of built-in DOM events.

To do so, we must import the createEventDispatcher function from the
 svelte package and call it to get an event dispatcher:

<script>
 import { createEventDispatcher } from 'svelte'
 const dispatch = createEventDispatcher()
</script>

Once we do so, we can call the dispatch() function, passing a string that
identifies the event (which we'll use for the on: syntax in other components
that use this):

<script>
 import { createEventDispatcher } from 'svelte'
 const dispatch = createEventDispatcher()

 //when it's time to trigger the event
 dispatch('eventName')
</script>

https://flaviocopes.com/javascript-events/#event-bubbling-and-event-capturing

42

Now other components can use ours using

<ComponentName on:eventName={event => { //do something }} />

You can also pass an object to the event, passing a second parameter to
 dispatch() :

<script>
 import { createEventDispatcher } from 'svelte'
 const dispatch = createEventDispatcher()
 const value = 'something'

 //when it's time to trigger the event
 dispatch('eventName', value)

 //or

 dispatch('eventName', {
 someProperty: value,
 })
</script>

the object passed by dispatch() is available on the event object.

14. Where To Go From Here
I hope this little handbook was useful to shine a light on what Svelte can do
for you, and I hope you are now interested to learn more about it!

I can now point you to two places to learn more:

The official Svelte website
SvelteKit, an awesome framework built on top of Svelte that lets you
build server-side rendered apps with Node.js and Svelte

https://svelte.dev/
https://kit.svelte.dev/

43

Conclusion
Thanks a lot for reading this book.

For more, head over to flaviocopes.com.

Send any feedback, errata or opinions at flavio@flaviocopes.com

https://flaviocopes.com/
mailto:flavio@flaviocopes.com

	Preface
	The Svelte Handbook
	Conclusion

