

1

Table of Contents
Preface

The PHP Handbook

Conclusion

2

Preface
The PHP Handbook follows the 80/20 rule: learn in 20% of the time the 80%
of a topic.

In particular, the goal is to get you up to speed quickly with PHP.

This book is written by Flavio. I publish programming tutorials on my
blog flaviocopes.com and I organize a yearly bootcamp at bootcamp.dev.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://bootcamp.dev/
https://twitter.com/flaviocopes

3

The PHP Handbook
1. Preface
2. Introduction to PHP
3. Which kind of language is PHP?
4. Setting up PHP
5. Your first PHP program
6. PHP language basics

6.1. Variables
6.2. Comments
6.3. Types
6.4. Printing the value of a variable
6.5. Operators

7. Strings
8. Built-in functions for numbers
9. Arrays

9.1. Useful functions for arrays
9.2. Associative arrays

10. Conditionals
11. Loops

11.1. while
11.2. do while
11.3. foreach
11.4. for
11.5. break and continue

12. Functions
13. Looping arrays with map/filter/reduce
14. Object oriented PHP

14.1. Classes and objects
14.2. Properties
14.3. Methods
14.4. Constructor
14.5. Inheritance

4

14.6. protected properties and methods
14.7. Overriding methods
14.8. Static properties and methods
14.9. Comparing objects
14.10. Iterating object properties
14.11. Cloning objects
14.12. Magic methods

15. Including other PHP files
16. Useful constants, functions and variables for filesystem
17. Errors
18. Exceptions
19. Dates
20. Constants and enums
21. PHP as a web app development platform

21.1. Handling HTTP requests
21.2. $_GET , $_POST and $_REQUEST
21.3. The $_SERVER object
21.4. Using forms in PHP
21.5. HTTP Headers
21.6. Using cookies
21.7. Sessions
21.8. Working with files/folders
21.9. PHP and databases
21.10. JSON
21.11. Sending emails

22. Using Composer and Packagist
23. Deploying PHP applications
24. Conclusion

1. Preface
PHP is an incredibly popular programming language.

5

Statistics say it’s used by 80% of all websites. It’s the language used by
WordPress, the widely used content management system for websites.

And it powers a lot of different frameworks that make Web Development
easier, like Laravel. Speaking of Laravel, that might be the one reason to
learn PHP these days.

PHP is a very polarizing language. Some people love it, some people hate it. If
we move one step above the emotions and we look at the language as a tool,
PHP has a lot to offer.

Sure it’s not perfect. But let me tell you no language is perfect.

In this handbook, I’m going to help you learn PHP.

This book is a perfect introduction if you’re new to the language.

It’s also perfect if you’ve done “some PHP” in the past and you want to get
back to it.

I’ll explain modern PHP, version 8+.

PHP has evolved a lot in the last few years and if the last time you tried it was
PHP 5 or even PHP 4, you’d be surprised at all the good things that PHP now
offers.

Let’s go!

2. Introduction to PHP
PHP is a programming language mostly used to create Web Applications.

As a language, it had a humble beginning. It was first created in 1994 by
Rasmus Lerdorf to create his personal website. He didn’t know at the time it
would eventually become one of the most popular programming languages in
the world. It became popular later on, in 1997/8, and exploded in the 2000s
when PHP 4 landed.

PHP can be used to add little interactivity to an HTML page.

6

Or it can be used as a Web Application engine that creates HTML pages
dynamically and sends them to the browser.

It can scale to millions of page views.

Did you know Facebook is powered by PHP? Ever heard of Wikipedia? Slack?
Etsy?

3. Which kind of language is PHP?
Let’s get into some technical jargon.

Programming languages are divided into groups depending on their
characteristics. For example interpreted/compiled, strongly/loosely typed,
dynamically/statically typed.

PHP is often called a “scripting language” and it’s an interpreted
language. If you’ve used compiled languages like C or Go or Swift, the main
difference is that you don’t need to compile a PHP program before you run it.

Those languages are compiled and the compiler generates an executable
program that you then run. It’s a two step process.

The PHP interpreter is responsible for interpreting the instructions written
in a PHP program when it’s executed. It’s just one step. You tell the
interpreter to run the program. A completely different workflow.

PHP is a dynamically typed language. The types of variables are checked
at runtime, rather than before the code is executed as it happens for statically
typed languages (which also happen to be compiled, the two characteristics
often go hand in hand).

PHP is also loosely (weakly) typed. Compared to strongly typed languages
like Swift, Go, C or Java, you don’t need to declare the types of your variables.

Being interpreted and loosely/dynamically typed will make bugs harder to
find before they happen at runtime. Often the compiled can be a great help to
anticipate possible problems. But on the other hand, an interpreted language

7

has more flexibility.

Fun fact: PHP is written, internally, in C, a compiled and statically typed
language.

In its nature, PHP is similar to JavaScript, another dynamically typed,
loosely typed and interpreted language.

PHP supports object-oriented programming, and also functional
programming. You can use it as you prefer.

4. Setting up PHP
There are many ways to install PHP on your local machine.

The most convenient way I’ve found to install PHP locally is to use MAMP.

MAMP is a tool that’s freely available for all the Operating Systems - Mac,
Windows and Linux. It is a package that gives you all the tools you need to
get up and running.

PHP is run by a HTTP Server, which is responsible for responding to HTTP
requests, the ones made by the browser. So you access a URL with your
browser, Chrome or Firefox or Safari, and the HTTP server responds with
some HTML content.

The server is typically Apache or nginx.

Then to do anything non-trivial you’ll need a database, like MySQL.

MAMP is a package that provides all of that, and more, and gives you a nice
interface to start/stop everything at once.

Of course, you can set up each piece on its own if you like, and many tutorials
explain how to do that, but I like simple and practical tools and MAMP is one
of those.

You can follow this handbook with any kind of PHP installation method, not
just MAMP.

8

That said, if you don’t have PHP installed yet and you want to use MAMP, go
to https://www.mamp.info and install it.

The process will depend on your operating system, but once you’re done with
the installation, you will have a “MAMP” application installed.

Start that, and you will see a window similar to this:

Make sure the PHP version selected is the latest available.

At the time of writing MAMP lets you pick 8.0.8.

NOTE: I noticed MAMP has a version that’s a bit behind, not the latest.
You can install a more recent version of PHP by enabling the MAMP
PRO Demo, then install the latest release from the MAMP PRO settings
(in my case it was 8.1.0), then close it and reopen MAMP (non-pro
version). MAMP PRO has more features so you might want to use it, but
it’s not necessary to follow this handbook.

https://www.mamp.info/

9

Press the Start button at the top right, this will start the Apache HTTP server,
with PHP enabled, and the MySQL database.

Go to the URL http://localhost:8888 and you will see a page similar to this:

We’re ready to write some PHP!

Open the folder listed as “Document root”, using MAMP on a Mac it’s by
default /Applications/MAMP/htdocs .

On Windows it’s C:\MAMP\htdocs .

Yours might be different depending on your configuration. Using MAMP you
can find it in the user interface of the application.

In there, you will find a file named index.php .

That is responsible for printing the page shown above.

http://localhost:8888/

10

5. Your first PHP program
When learning a new programming language we have this tradition of
creating a “Hello, World!” application. Something that prints those strings.

Make sure MAMP is running, and open the htdocs folder as explained
above.

Open the index.php file in a code editor.

I recommend using VS Code, it’s a very simple code editor. See
https://flaviocopes.com/vscode/ for an introduction.

https://code.visualstudio.com/
https://flaviocopes.com/vscode/

11

This is the code that generates the “Welcome to MAMP” page you saw in the
browser.

Delete everything and replace that with:

<?php
echo 'Hello World';
?>

Save, refresh the page on http://localhost:8888, you should see this:

http://localhost:8888/

12

Great!

That was your first PHP program.

Let’s explain what is happening here.

We have the Apache HTTP server listening on port 8888 on localhost, your
computer.

When we access http://localhost:8888 with the browser we’re making an
HTTP request, asking for the content of the route / , the base URL.

Apache by default is configured to serve that route serving the index.html
file included in the htdocs folder. That file does not exist, but as we have
configured Apache to work with PHP, it will then search for an index.php
file.

That file exists, and PHP code is executed server-side before Apache sends
the page back to the browser.

In the PHP file, we have a <?php opening, which says “here starts some PHP
code”.

http://localhost:8888/

13

We have an ending ?> that closes the PHP code snippet, and inside it, we
use the echo instruction to print the string enclosed into quotes into the
HTML.

A semicolon is required at the end of every statement.

We have this opening/closing structure because we can embed PHP inside
HTML. PHP is a scripting language, whose goal is to be able to “decorate” an
HTML page with dynamic data.

Note that with modern PHP, we generally avoid mixing PHP into the
HTML, and instead PHP is used as a “framework to generate the
HTML”, for example using tools like Laravel. But we discuss plain PHP
in this book, so it makes sense to start from the basics.

For example, something like this will give you the same result in the browser:

Hello
<?php
echo 'World';
?>

To the final user, that looks at the browser and has no idea of the code behind
the scenes, there’s no difference at all.

The page is technically an HTML page, even though it does not contain
HTML tags but just a Hello World string, but the browser can figure out
how to display that in the window.

6. PHP language basics
After the first “Hello World”, it’s time to dive into the language features with
more details.

6.1. Variables

14

Variables in PHP start with the dollar sign $, followed by an identifier,
which is a set of alphanumeric chars and the underscore _ char.

A variable can be assigned any type of value, like strings (defined using single
or double quotes):

$name = 'Flavio';

$name = "Flavio";

Or numbers:

$age = 20;

or any other type that PHP allows, as we’ll later see.

Once a variable is assigned a value, for example a string, we can reassign it a
different type of value, like a number:

$name = 3;

PHP won’t complain that now the type is different.

Variable names are case-sensitive. $name is different from $Name .

It’s not a hard rule, but generally variable names are written in camelCase
format, like this: $brandOfCar or $ageOfDog . We keep the first letter
lowercase, and the letters of the subsequent words uppercase.

6.2. Comments

A very important part of any programming language is how you write
comments.

Single-line comments in PHP are written in this way:

// single line comment

15

Multi-line comments are defined in this way:

/*

this is a comment

*/

//or

/*
 *
 * this is a comment
 *
 */

//or to comment out a portion of code inside a line:

/* this is a comment */

6.3. Types

I mentioned strings and numbers.

PHP has the following types:

 bool boolean values (true/false)
 int integer numbers (no decimals)
 float floating-point numbers (decimals)
 string strings
 array arrays
 object objects
 null a value that means “no value assigned”

and a few other more advanced ones.

6.4. Printing the value of a variable

We can use the var_dump() built-in function to get the value of a variable

16

$name = 'Flavio';

var_dump($name);

The var_dump($name) instruction will print string(6) "Flavio" to the page,
which tells us the variable is a string of 6 characters.

If we used this code:

$age = 20;

var_dump($age);

we’d have int(20) back, saying the value is 20 and it’s an integer.

 var_dump() is one of the essential tools in your PHP debugging toolbelt.

6.5. Operators

Once you have a few variables you can make operations with them:

$base = 20;
$height = 10;

$area = $base * $height;

The * I used to multiply $base per $height is the multiplication operator.

We have quite a few operators, let’s do a quick roundup of the main ones.

To start with, here are the arithmetic operators: + , - , * , / (division),
 % (remainder) and ** (exponential)

We have the assignment operator = , which we already used to assign a
value to a variable.

Next up we have comparison operators, like < , > , <= , >= . Those work
like they do in math.

17

2 < 1; //false
1 <= 1; // true
1 <= 2; // true

 == returns true if the two operands are equal.

 === returns true if the two operands are identical.

What’s the difference?

You’ll find it with experience, but for example

1 == '1'; //true
1 === '1'; //false

We also have != to detect if operands are not equal:

1 != 1; //false
1 != '1'; //false
1 != 2; //true

//hint: <> works in the same way as !=, 1 <> 1

and !== to detect if operands are not identical:

1 !== 1; //false
1 !== '1'; //true

Logical operators work with boolean values:

18

// Logical AND with && or "and"

true && true; //true
true && false; //false
false && true; //false
false && false; //false

true and true; //true
true and false; //false
false and true; //false
false and false; //false

// Logical OR with || or "or"

true || true; // true
true || false //true
false || true //true
false || false //false

true or true; // true
true or false //true
false or true //true
false or false //false

// Logical XOR (one of the two is true, but not both)

true xor true; // false
true xor false //true
false xor true //true
false xor false //false

We also have the not operator:

$test = true

!$test //false

I used the boolean values true and false here, but in practice you’ll use
expressions that evaluate to either true or false, for example:

19

1 > 2 || 2 > 1; //true

1 !== 2 && 2 > 2; //false

All of the operators listed above are binary, meaning they involve 2
operands.

PHP also has 2 unary operators: ++ and -- :

$age = 20;
$age++;
//age is now 21

$age--;
//age is now 20

7. Strings
I introduced the use of strings before when we talked about variables and we
defined a string using this notation:

$name = 'Flavio'; //string defined with single quotes

$name = "Flavio"; //string defined with double quotes

The big difference between using single and double quotes is that with double
quotes we can expand variables in this way:

$test = 'an example';

$example = "This is $test"; //This is an example

and with double quotes we can use escape characters (think new lines \n or
tabs \t):

20

$example = "This is a line\nThis is a line";

/*
output is:

This is a line
This is a line
*/

PHP offers you a very comprehensive set of functions in its standard library
(the library of functionalities offered by default by the language).

First, we can concatenate two strings using the . operator:

$firstName = 'Flavio';
$lastName = 'Copes';

$fullName = $firstName . ' ' . $lastName;

We can check the length of a string using the strlen() function:

$name = 'Flavio';
strlen($name); //6

This is the first time we use a function.

A function is composed of an identifier (strlen in this case) followed by
parentheses. Inside those parentheses, we pass one or more arguments to the
function. In this case, we have one argument.

The function does something and when it’s done it can return a value. In this
case, it returns the number 6 . If there’s no value returned, the function
returns null .

We’ll see how to define our own functions later.

We can get a portion of a string using substr() :

21

$name = 'Flavio';
substr($name, 3); //"vio" - start at position 3, get all the rest
substr($name, 2, 2); //"av" - start at position 2, get 2 items

We can replace a portion of a string using str_replace() :

$name = 'Flavio';
str_replace('avio', 'ower', $name); //"Flower"

Of course we can assign the result to a new variable:

$name = 'Flavio';
$itemObserved = str_replace('avio', 'ower', $name); //"Flower"

There are a lot more built-in functions you can use to work with strings.

Here is a brief non-comprehensive list just to show you the possibilities:

 trim() strips white space at the beginning and end of a string
 strtoupper() makes a string uppercase
 strtolower() makes a string lowercase
 ucfirst() makes the first character uppercase
 strpos() finds the firsts occurrence of a substring in the string
 explode() to split a string into an array
 implode() to join array elements in a string

Full list on https://www.php.net/manual/en/book.strings.php

8. Built-in functions for numbers
I previously listed the few functions we commonly use for strings.

Let’s do a list of the ones we use with numbers:

 round() to round a decimal number, up/down depending if the value is
> 0.5 or smaller

https://www.php.net/manual/en/function.trim.php
https://www.php.net/manual/en/function.strtoupper.php
https://www.php.net/manual/en/function.strtolower.php
https://www.php.net/manual/en/function.ucfirst.php
https://www.php.net/manual/en/function.strpos.php
https://www.php.net/manual/en/function.explode.php
https://www.php.net/manual/en/function.implode.php
https://www.php.net/manual/en/book.strings.php
https://www.php.net/manual/en/function.round.php

22

 ceil() to round a a decimal number up
 floor() to round a decimal number down
 rand() generates a random integer
 min() finds the lowest number in the numbers passed as arguments
 max() finds the highest number in the numbers passed as arguments
 is_nan() returns true if the number is not a number

There are a ton of different functions for all sorts of math operations like
sine, cosine, tangents, logarithms, etc, full list on
https://www.php.net/manual/en/book.math.php

9. Arrays
Arrays are lists of values grouped under a common name.

You can define an empty array in 2 different ways:

$list = [];

$list = array();

An array can be initialized with values:

$list = [1, 2];

$list = array(1, 2);

Array can hold values of any type:

$list = [1, 'test'];

Even other arrays:

$list = [1, [2, 'test']];

https://www.php.net/manual/en/function.ceil.php
https://www.php.net/manual/en/function.floor.php
https://www.php.net/manual/en/function.rand.php
https://www.php.net/manual/en/function.min.php
https://www.php.net/manual/en/function.max.php
https://www.php.net/manual/en/function.is-nan.php
https://www.php.net/manual/en/book.math.php

23

You can access the element in an array using this notation:

$list = ['a', 'b'];
$list[0]; //'a' --the index starts at 0
$list[1]; //'b'

Once an array is created, you can append values to it in this way:

$list = ['a', 'b'];
$list[] = 'c';

/*
$list == [
 "a",
 "b",
 "c",
]
*/

You can use array_unshift() to add the item at the beginning of the array
instead:

$list = ['b', 'c'];
array_unshift($list, 'a');

/*
$list == [
 "a",
 "b",
 "c",
]
*/

Count how many items are in an array using the built-in count() function:

$list = ['a', 'b'];

count($list); //2

24

Check if an array contains an item using the in_array() built-in function:

$list = ['a', 'b'];

in_array('b', $list); //true

If in addition to confirming existance you need the index, use
 array_search() :

$list = ['a', 'b'];

array_search('b', $list) //1

9.1. Useful functions for arrays

As with strings and numbers, PHP provides lots of very useful functions for
arrays. We’ve seen count() , in_array() , array_search() , let’s see some
more:

 is_array() to check if a variable is an array
 array_unique() to remove duplicate values from an array
 array_search() to search a value in the array and returns the key
 array_reverse() to reverse an array
 array_reduce() to reduce an array to a single value using a callback
function
 array_map() to apply a callback function to each item in the array.
Typically used to create a new array by modifying the values of an
existing array, without altering that.
 array_filter() to filter an array to a single value using a callback
function
 max() to get the maximum value contained in the array
 min() to get the minimum value contained in the array
 array_rand() to get a random item from the array
 array_count_values() to count all the values in the array
 implode() to turn an array into a string

25

 array_pop() to remove the last item of the array and return its value
 array_shift() same as array_pop() but removes the first item instead
of the last
 sort() to sort an array
 rsort() to sort an array in reversing order
 array_walk() similarly to array_map() does something for every item
in the array, but in addition it can change values in the existing array

9.2. Associative arrays

So far we’ve used arrays with an incremental, numeric index: 0, 1, 2…

You can also use arrays with named indexes (keys), and we call them
associative arrays:

$list = ['first' => 'a', 'second' => 'b'];

$list['first'] //'a'
$list['second'] //'b'

We have some functions especially useful for associative arrays:

 array_key_exists() to check if a key exists in the array
 array_keys() to get all the keys from the array
 array_values() to get all the values from the array
 asort() to sort an associative array by value
 arsort() to sort an associative array in descending order by value
 ksort() to sort an associative array by key
 krsort() to sort an associative array in descending order by key

See all array-related functions here
https://www.php.net/manual/en/ref.array.php

10. Conditionals

https://www.php.net/manual/en/ref.array.php

26

I previously introduced comparison operators: < , > , <= , >= , == , ===
, != , !== ... and so on!

Those operators are going to be super useful for one thing: conditionals.

Conditionals are the first control structure we see.

We can decide to do something, or something else, based on a comparison.

For example:

$age = 17;

if ($age > 18) {
 echo 'You can enter the pub';
}

The code inside the parentheses only executes if the condition evaluates to
 true .

Use else to do something else in case the condition is false :

$age = 17;

if ($age > 18) {
 echo 'You can enter the pub';
} else {
 echo 'You cannot enter the pub';
}

NOTE: I used cannot instead of can't because the single quote would
terminate my string before it should. In this case you could escape the
 ' in this way: echo 'You can\'t enter the pub';

You can have multiple if statements chained using elseif :

27

$age = 17;

if ($age > 20) {
 echo 'You are 20+';
} elseif ($age > 18) {
 echo 'You are 18+';
} else {
 echo 'You are <18';
}

In addition to if , we have the switch statement.

We use that when we have a variable that could have a few different values,
and we don’t have to have a long if / elseif block:

$age = 17

switch($age) {
 case 15:
 echo 'You are 15';
 break;
 case 16:
 echo 'You are 16';
 break;
 case 17:
 echo 'You are 17';
 break;
 case 18:
 echo 'You are 18';
 break;
 default:
 echo "You are $age";
}

I know the example does not have any logic, but I think it can help you
understand how switch works.

The break; statement after each case is essential. If you don’t add that and
the age is 17, you’d see

28

You are 17
You are 18
You are 17

Instead of just

You are 17

as you’d expect.

11. Loops
Loops are another super useful control structure.

We have a few different kinds of loops in PHP: while , do while , for ,
 foreach .

Let’s see them all!

11.1. while

 while is the simplest one. It keeps iterating while the condition evaluates to
 true

while (true) {
 echo 'looping';
}

This would be an infinite loop, this is why we use variables and comparisons:

$counter = 0;

while ($counter < 10) {
 echo $counter;
 $counter++;
}

29

11.2. do while

 do while is similar, but slightly different in how the first iteration is
performed:

$counter = 0;

do {
 echo $counter;
 $counter++;
} while ($counter < 10);

In the do while loop first we do the first iteration, then we check the
condition.

In while first we check the condition, then we do the iteration.

Do a simple test by setting $counter to 15 in the above examples, and see
what happens.

You might want to choose one kind of loop, or the other, depending on your
use case.

11.3. foreach

The foreach loop is used to easily iterate over an array:

$list = ['a', 'b', 'c'];

foreach ($list as $value) {
 echo $value;
}

You can also get the value of the index (or key in an associative array) in this
way:

30

$list = ['a', 'b', 'c'];

foreach ($list as $key => $value) {
 echo $key;
}

11.4. for

The for loop is similar to while, but instead of defining the variable used in
the conditional before the loop, and instead of incrementing the index
variable manually, it’s all done in the first line:

for ($i = 0; $i < 10; $i++) {
 echo $i;
}

//result: 0123456789

You can use the for loop to iterate an array in this way:

$list = ['a', 'b', 'c'];

for ($i = 0; $i < count($list); $i++) {
 echo $list[$i];
}

//result: abc

11.5. break and continue

In many cases you want the ability to stop a loop on demand.

For example you want to stop a for loop when the value of the variable in
the array is 'b' :

31

$list = ['a', 'b', 'c'];

for ($i = 0; $i < count($list); $i++) {
 if ($list[$i] == 'b') {
 break;
 }
 echo $list[$i];
}

//result: a

This makes the loop completely stop at that point, and the program execution
continues at the next instruction after the loop.

If you just want to skip the current loop iteration and keep looking, use
 continue instead:

$list = ['a', 'b', 'c'];

for ($i = 0; $i < count($list); $i++) {
 if ($list[$i] == 'b') {
 continue;
 }
 echo $list[$i];
}

//result: ac

12. Functions
Functions are one of the most important concepts in programming.

You can use functions to group together multiple instructions, multiple lines
of code, and give them a name.

For example you can make a function that sends an email. For example let’s
call it sendEmail , and we define it like this:

32

function sendEmail() {
 //send an email
}

and you can call it anywhere else by using this syntax:

sendEmail();

You can pass arguments to a function, for example when you send an email
you want to send it to someone, so you add the email as the first argument:

sendEmail('test@test.com');

Inside the function definition we get this parameter in this way (we call them
parameters inside the function definition, and arguments when we call the
function):

function sendEmail($to) {
 echo "send an email to $to";
}

You can send multiple arguments by separating them with commas:

sendEmail('test@test.com', 'subject', 'body of the email');

And we can get those parameters in the order they were defined:

function sendEmail($to, $subject, $body) {
 //...
}

We can optionally set the type of parameters:

33

function sendEmail(string $to, string $subject, string $body) {
 //...
}

Parameters can have a default value, so if they are omitted we can still have a
value for them:

function sendEmail($to, $subject = 'test', $body = 'test') {
 //...
}

sendEmail('test@test.com')

A function can return a value. Only one value can be returned from a
function, not more than one. You do that using the return keyword. If
omitted, the function returns null .

The returned value is super useful to know the result of the work done in the
function, or to use its result after calling it:

function sendEmail($to) {
 return true;
}

$success = sendEmail('test@test.com');

if ($success) {
 echo 'email sent successfully';
} else {
 echo 'error sending the email';
}

We can optionally set the return type of a function using this syntax:

function sendEmail($to): bool {
 return true;
}

34

When you define a variable inside a function, that variable is local to the
function, which means it’s not visible from outside. When the function ends,
it just stops existing:

function sendEmail($to) {
 $test = 'a';
}

var_dump($test); //PHP Warning: Undefined variable $test

Variables defined outside of the function are not accessible inside the
function.

This enforces a good programming practice as we can be sure the function
does not modify external variables and causes “side effects”.

Instead you return a value from the function, and the outside code that calls
the function will take responsibility for updating the outside variable.

Like this:

$character = 'a';

function test() {
 return 'b';
}

$character = test();

You can pass the value of a variable passing it as an argument to the function:

$character = 'a';

function test($c) {
 echo $c;
}

test($character);

35

But you can’t modify that value from within the function.

It’s passed by value, which means the function receives a copy of it, not the
reference to the original variable.

That is still possible using this syntax (notice I used & in the parameter
definition):

$character = 'a';

function test(&$c) {
 $c = 'b';
}

test($character);

echo $character; //'b'

The functions we defined so far are named functions.

They have a name.

We also have anonymous functions, which can be useful in a lot of cases.

They don’t have a name, per se, but they are assigned to a variable. To call
them, you invoke the variable with parentheses at the end:

$myfunction = function() {
 //do something here
};

$myfunction()

Note that you need a semicolon after the function definition, but then they
work like named functions for return values and parameters.

Interestingly, they offer a way to access a variable defined outside the
function through use() :

36

$test = 'test';

$myfunction = function() use ($test) {
 echo $test;
 return 'ok';
};

$myfunction()

Another kind of function is an arrow function.

An arrow function is an anonymous function that’s just one expression (one
line), and implicitly returns the value of that expression

You define it in this way:

fn (arguments) => expression;

Here’s an example:

$printTest = fn() => 'test';

$printTest(); //'test'

You can pass parameters to an arrow function:

$multiply = fn($a, $b) => $a * $b;

$multiply(2, 4) //8

Note that as the next example shows arrow functions have automatic access
to the variables of the enclosing scope, without the need of use() .

37

$a = 2;
$b = 4;

$multiply = fn() => $a * $b;

$multiply()

Arrow functions are super useful when you need to pass a callback function.
We’ll see how to use them to perform some array operations later.

So we have in total 3 kinds of functions: named functions, anonymous
functions, and arrow functions.

Each of them has its place, and you’ll learn how to use them properly over
time, with practice.

13. Looping arrays with
map/filter/reduce
Another important set of looping structures, often used in functional
programming, is the set of array_map() / array_filter() /
 array_reduce() .

Those 3 built-in PHP functions take an array, and a callback function that in
each iteration takes each item in the array.

 array_map() returns a new array that contains result of running the callback
function on each item in the array:

$numbers = [1, 2, 3, 4];
$doubles = array_map(fn($value) => $value * 2, $numbers);

//$doubles is now [2, 4, 6, 8]

 array_filter() generates a new array by only getting the items whose
callback function returns true :

38

$numbers = [1, 2, 3, 4];
$even = array_filter($numbers, fn($value) => $value % 2 === 0)

//$even is now [2, 4]

 array_reduce() is used to reduce an array to a single value.

For example we can use it to multiply all items in an array:

Notice the last parameter, it’s the initial value. If you omit that, the default
value is 0 but that would not work for our multiplication example.

Note that in array_map() the order of the arguments is reversed, first
you have the callback function and then the array. This is because we can
pass multiple arrays using commas (array_map(fn($value) => $value *
2, $numbers, $otherNumbers, $anotherArray);). Ideally we’d like more
consistency, but that’s what it is.

14. Object oriented PHP

14.1. Classes and objects

Let’s now jump head first into a big topic: object-oriented programming with
PHP.

Object-oriented programming is useful to create useful abstractions and
make our code simpler to understand and manage.

To start with, you have classes and objects.

A class is a blueprint, or type, of object.

For example you have the class Dog , defined in this way:

$numbers = [1, 2, 3, 4];

$result = array_reduce($numbers, fn($carry, $value) => $carry * $value, 1)

39

class Dog {

}

(it must be defined uppercase)

Then you can create objects from this class. Specific, individual dogs.

An object is assigned to a variable, and it’s instantiated using the new

Classname() syntax:

$roger = new Dog();

You can create multiple objects from the same class, by assigning each object
to a different variable:

$roger = new Dog();
$syd = new Dog();

14.2. Properties

Those objects will all share the same characteristics defined by the class, but
once they are instantiated, they will have a life of their own.

For example, a Dog has a name, an age, and a fur color.

So we can define those as properties in the class:

class Dog {
 public $name;
 public $age;
 public $color;
}

They work like variables, but they are attached to the object, once
instantiated from the class. The public keyword is the access modifier and
sets the property to be publicly accessible.

40

You can assign values to those properties in this way:

class Dog {
 public $name;
 public $age;
 public $color;
}

$roger = new Dog();

$roger->name = 'Roger';
$roger->age = 10;
$roger->color = 'gray';

var_dump($roger);

/*
object(Dog)#1 (3) {
 ["name"]=> string(5) "Roger"
 ["age"]=> int(10)
 ["color"]=> string(4) "gray"
}
*/

Notice that the property is defined as public .

That is called access modifier. You could use 2 other kinds of access
modifiers: private and protected . Private makes the property inaccessible
from outside the object. Only methods defined inside the object can access it.

We’ll see more about protected when we’ll talk about inheritance.

14.3. Methods

Did I say method? What is a method?

A method is a function defined inside the class, and it’s defined in this way:

41

class Dog {
 public function bark() {
 echo 'woof!';
 }
}

Methods are very useful to attach a behavior to an object. In this case we can
make a dog bark.

Notice I used the public keyword, that’s to say a method can be invoked
from outside the class. Like for properties, you can mark methods as
 private too, or protected , to restrict its access.

You invoke a method on the object instance like this:

class Dog {
 public function bark() {
 echo 'woof!';
 }
}

$roger = new Dog();

$roger->bark();

A method, just like a function, can define parameters and a return value too.

Inside a method we can access the object’s properties using the special built-
in $this variable, which when referenced inside a method points to the
current object instance:

42

class Dog {
 public $name;

 public function bark() {
 echo $this->name . ' barked!';
 }
}

$roger = new Dog();
$roger->name = 'Roger';
$roger->bark();

Notice I used $this->name to set and access the $name property, and
not $this->$name .

14.4. Constructor

A special kind of method named __construct() is called constructor.

class Dog {
 public function __construct() {

 }
}

This method is used to initialize the properties of an object when you create
it, as it’s automatically invoked when calling new Classname()

43

class Dog {
 public $name;

 public function __construct($name) {
 $this->name = $name;
 }

 public function bark() {
 echo $this->name . ' barked!';
 }
}

$roger = new Dog('Roger');
$roger->bark();

This is such a common thing that PHP (starting in PHP 8) includes
something called constructor promotion where it automatically does this
thing:

class Dog {
 public $name;

 public function __construct($name) {
 $this->name = $name;
 }

 //...

by using the access modifier, the assignment from the parameter of the
constructor to the local variable is done automatically:

44

class Dog {
 public function __construct(public $name) {
 }

 public function bark() {
 echo $this->name . ' barked!';
 }
}

$roger = new Dog('Roger');
$roger->name; //'Roger'
$roger->bark(); //'Roger barked!'

Properties can be typed.

You can require the name to be a string using public string $name :

class Dog {
 public string $name;

 public function __construct($name) {
 $this->name = $name;
 }

 public function bark() {
 echo $this->name . ' barked!';
 }
}

$roger = new Dog('Roger');
$roger->name; //'Roger'
$roger->bark(); //'Roger barked!'

Now all works fine in this example, but try changing that to public int
$name to require it to be an integer.

PHP will raise an error if you initialize $name with a string:

TypeError: Dog::__construct():
Argument #1 ($name) must be of type int,
string given on line 14

45

Interesting, right?

We can enforce properties to have a specific type between string , int ,
 float , string , object , array , bool and others.

14.5. Inheritance

The fun in object oriented programming starts when we allow classes to
inherit properties and methods from other classes.

Suppose you have an Animal class:

class Animal {

}

Every animal has an age, and every animal can eat. So we add a age
property and an eat() method:

class Animal {
 public $age;

 public function eat() {
 echo 'the animal is eating';
 }
}

A dog is an animal and has an age and can eat too, so the Dog class instead
of reimplementing the same things we have in Animal can extend that class:

class Dog extends Animal {

}

We can now instantiate a new object of class Dog and we have access to the
properties and methods defined in Animal :

https://www.php.net/manual/en/language.types.declarations.php

46

$roger = new Dog();
$roger->eat();

In this case we call Dog the child class and Animal the parent class.

Inside the child class we can use $this to reference any property or method
defined in the parent, as if they were defined inside the child class.

It’s worth noting that while we can access the parent’s properties and
methods from the child, we can’t do the reverse.

The parent class knows nothing about the child class.

14.6. protected properties and methods

Now that we introduced inheritance we can discuss protected . We already
saw how we can use the public access modifier to set properties and
methods callable from outside of a class, by the public.

 private properties and methods can only be accessed from within the class.

 protected properties and methods can be accessed from within the class
and from child classes.

14.7. Overriding methods

What happens if we have a eat() method in Animal and we want to
customize it in Dog ? We can override that method.

47

class Animal {
 public $age;

 public function eat() {
 echo 'the animal is eating';
 }
}

class Dog extends Animal {
 public function eat() {
 echo 'the dog is eating';
 }
}

Now any instance of Dog will use the Dog 's implementation of the eat()
method.

14.8. Static properties and methods

We’ve seen how to define properties and methods that belong to the
instance of a class, an object.

Sometimes it’s useful to assign those to the class itself.

When this happens we call them static and to reference or call them we
don’t need to create an object from the class.

Let’s start with static properties, we define them with the static keyword:

class Utils {
 public static $version = '1.0';
}

We reference them from inside the class using the keyword self , which
points to the class:

self::$version;

48

and from outside the class using:

Utils::version

This is what happens for static methods:

class Utils {
 public static function version() {
 return '1.0';
 }
}

From the outside of the class we can call them in this way:

Utils::version();

From inside the class, we can reference them using the self keyword,
which refers to the current class:

self::version();

14.9. Comparing objects

When we talked about operators I mentioned we have the == operator to
check if two values are equal and === to check if they are identical.

Mainly the difference is that == checks the object content, for example the
 '5' string is equal to the number 5 , but it’s not identical to it.

When we use those operators to compare objects, == will check if the two
objects have the same class and have the same values assigned to them.

 === on the other hand will check if they also refer to the same instance
(object).

For example:

49

class Dog {
 public $name = 'Good dog';
}

$roger = new Dog();
$syd = new Dog();

echo $roger == $syd; //true

echo $roger === $syd; //false

14.10. Iterating object properties

You can loop over all the public properties in an object using a foreach loop,
like this:

class Dog {
 public $name = 'Good dog';
 public $age = 10;
 public $color = 'gray';
}

$dog = new Dog();

foreach ($dog as $key => $value) {
 echo $key . ': ' . $value . '
';
}

14.11. Cloning objects

When you have an object you can clone it using the clone keyword:

50

class Dog {
 public $name;
}

$roger = new Dog();
$roger->name = 'Roger';

$syd = clone $roger;

This performs a shallow clone, which means that references to other
variables will be copied as references - there will not a “recursive cloning” of
them.

To do a deep clone you will need to do some more work.

14.12. Magic methods

Magic methods are special methods that we define in classes to perform
some behavior when something special happens.

For example when a property is set, or accessed, or when the object is cloned.

We’ve seen __construct() before.

That’s a magic method.

There are others. For example we can set a “cloned” boolean property to true
when the object is cloned:

51

class Dog {
 public $name;

 public function __clone() {
 $this->cloned = true;
 }
}

$roger = new Dog();
$roger->name = 'Roger';

$syd = clone $roger;
echo $syd->cloned;

Other magic methods include __call() , __get() , __set() , __isset() ,
 __toString() and others.

See the full list here

15. Including other PHP files
We’re now done talking about the object oriented features of PHP.

Let’s now explore some other interesting topics!

Inside a PHP file you can include other PHP files. We have the following
methods, all used for this use case, but slightly different: include ,
 include_once , require , require_once .

 include loads the content of another PHP file, using a relative path.

 require does the same, but if there’s any error doing so, the program halts.
 include will only generate a warning.

You can decide to use one or another depending on your use case. If you want
your program to exit if it can’t import the file, use require .

https://www.php.net/manual/en/language.oop5.magic.php

52

 include_once and require_once do the same thing as their corresponding
functions without _once , but they make sure the file is included/required
only once during the execution of the program.

This is useful for example if you have multiple files loading some other file,
and you typically want to avoid loading that more than once.

My rule of thumb is to never use include or require because you might
load the same file 2 times, include_once and require_once help you avoid
this problem.

Use include_once when you want to conditionally load a file, for example
“load this file instead of that”, and in all other cases, use require_once .

Here’s an example:

require_once('test.php');

//now we have access to the functions, classes
//and variables defined in the `test.php` file

The above syntax includes the test.php file from the current folder the file
where this code is in.

You can use relative paths

require_once('../test.php');

to include a file in the parent folder or to go in a subfolder

require_once('test/test.php');

You can use absolute paths:

require_once('/var/www/test/file.php');

53

In modern PHP codebases that use a framework, files are generally loaded
automatically so you’ll have less need to use the above functions.

16. Useful constants, functions and
variables for filesystem
Speaking of paths, PHP offers you several utilities to help you work with
paths.

You can get the full path of the current file using any of:

 __FILE__ , a magic constant
 $_SERVER['SCRIPT_FILENAME'] (more on $_SERVER later!)

You can get the full path of the folder where the current file is in using:

the getcwd() built-in function
 __DIR__ , another magic constant
combine __FILE__ with dirname() to get the current folder full path:
 dirname(__FILE__)

use $_SERVER['DOCUMENT_ROOT']

17. Errors
Every programmer makes errors. We’re humans, after all.

We might forget a semicolon. Or use the wrong variable name. Or pass the
wrong argument to a function.

In PHP we have:

Warnings
Notices
Errors

https://www.php.net/manual/en/function.getcwd.php

54

The first 2 are minor errors, and they do not stop the program execution.
PHP will print a message, and that’s it.

Errors terminate the execution of the program, and will print a message
telling you why.

There are many different kinds of errors, like parse errors, runtime fatal
errors, startup fatal errors, and more.

They’re all errors.

I said “PHP will print a message”, but.. where?

This depends on your configuration.

In development mode it’s common to log PHP errors directly into the Web
page, but also in an error log.

You want to see those errors as early as possible, so you can fix them.

In production on the other hand you don’t want to show them in the Web
page, but you still want to know about them.

What you do is, you log them to the error log.

This is all decided in the PHP configuration.

We haven’t talked about this yet, but there’s a file in your server
configuration that decides a lot of things about how PHP runs.

It’s called php.ini .

The exact location of this file depends on your setup.

To find out where is yours, the easiest way is to add this to a PHP file and run
it in your browser:

<?php
phpinfo();
?>

55

You will then see the location under “Loaded Configuration File”:

In my case it’s /Applications/MAMP/bin/php/php8.1.0/conf/php.ini .

NOTE: the information generated by phpinfo() contains a lot of other
useful information, remember that.

Using MAMP you can open the MAMP application folder and open bin/php ,
go in your specific PHP version (8.1.0 in my case) then go in conf . In there
you’ll find the php.ini file:

56

Open that file in an editor.

That contains a really long list of settings, with a great inline documentation
for each one.

We’re particularly interested in display_errors :

57

In production you want its value to be Off , as the docs above it say.

The errors will not show up anymore in the website, but you will see them in
the php_error.log file in the logs folder of MAMP in this case:

58

This file will be in a different folder depending on your setup.

You set this location in.. your php.ini :

The error log will contain all the error messages your application generates:

59

You can add information to the error log by using the error_log() function:

error_log('test');

It’s common to use a logger service for errors, like Monolog.

18. Exceptions
Sometimes errors are unavoidable.

Something completely unpredictable happens.

But many times, we can think ahead, and write code that can intercept an
error, and do something sensible when this happens. Like showing a useful
error message to the user, or try a workaround.

We do so using exceptions.

Exceptions are used to make us, developers, aware of a problem.

https://www.php.net/manual/en/function.error-log.php
https://github.com/Seldaek/monolog

60

We wrap some code that can potentially raise an exception into a try block,
and we have a catch block right after that. That catch block will be executed
if there’s an exception in the try block:

try {
 //do something
} catch (Throwable $e) {
 //we can do something here if an exception happens
}

Notice that we have an Exception object $e being passed to the catch
block, and we can inspect that object to get more information about the
exception, like this:

try {
 //do something
} catch (Throwable $e) {
 echo $e->getMessage();
}

Let’s do an example.

For example by mistake I divide a number by zero:

echo 1 / 0;

This will trigger a fatal error and the program is halted on that line:

61

Wrapping the operation in a try block and printing the error message in the
catch block, the program ends successfully, telling me the problem:

try {
 echo 1 / 0;
} catch (Throwable $e) {
 echo $e->getMessage();
}

62

Of course this is a simple example but you can see the benefit: I can intercept
the issue.

Each exception has a different class. For example we can catch this as
 DivisionByZeroError and this lets me filter the possible problems and handle
them differently.

I can have a catch-all for any throwable error at the end, like this:

try {
 echo 1 / 0;
} catch (DivisionByZeroError $e) {
 echo 'Ooops I divided by zero!';
} catch (Throwable $e) {
 echo $e->getMessage();
}

And I can also append a finally {} block at the end of this try/catch
structure to execute some code after the code is either executed successfully
without problems, or there was a catch:

https://www.php.net/manual/en/class.divisionbyzeroerror.php

63

try {
 echo 1 / 0;
} catch (DivisionByZeroError $e) {
 echo 'Ooops I divided by zero!';
} catch (Throwable $e) {
 echo $e->getMessage();
} finally {
 echo ' ...done!';
}

You can use the built-in exceptions provided by PHP but you can also create
your own exceptions.

19. Dates
Working with dates and times is very common in programming, let’s see
what PHP provides.

We can get the current timestamp (number of seconds since Jan 1 1970
00:00:00 GMT) using time() :

$timestamp = time();

https://www.php.net/manual/en/reserved.exceptions.php
https://www.php.net/manual/en/function.time.php

64

When you have a timestamp you can format that as date using date() , using
the format you prefer:

echo date('Y-m-d', $timestamp);

 Y is the 4-digits representation of the year, m is the month number (with
leading zero) and d is the number of day of the month, with leading zero.

See the full list of characters you can use to format the date

We can convert any date into a timestamp using strtotime() , which takes a
string with a textual representation of a date and converts it into the number
of seconds since Jan 1 1970:

echo strtotime('now');
echo strtotime('4 May 2020');
echo strtotime('+1 day');
echo strtotime('+1 month');
echo strtotime('last Sunday');

..it’s pretty flexible.

For dates it’s common to use libraries that offer a lot more functionality than
what the language can. A good option is Carbon.

20. Constants and enums
We can define constants in PHP using the define() built-in function:

define('TEST', 'some value');

And then we can use TEST as if it was a variable, but without the $ sign:

define('TEST', 'some value');

echo TEST;

https://www.php.net/manual/en/function.date.php
https://www.php.net/manual/en/datetime.format.php
https://www.php.net/manual/en/function.strtotime.php
https://carbon.nesbot.com/

65

We use uppercase identifiers as a convention for constants.

Interestingly, inside classes we can define constant properties using the
 const keyword:

class Dog {
 const BREED = 'Siberian Husky';
}

By default they are public but we can mark them as private or
 protected :

class Dog {
 private const BREED = 'Siberian Husky';
}

Enums allow you to group constants under a common “root”. For example
you want to have a Status enum that has 3 states: EATING SLEEPING
 RUNNING , the 3 states of a dog’s day.

So you have:

enum Status {
 case EATING;
 case SLEEPING;
 case RUNNING;
}

Now we can reference those constants in this way:

66

class Dog {
 public Status $status;
}

$dog = new Dog();

$dog->status = Status::RUNNING;

if ($dog->status == Status::SLEEPING) {
 //...
}

Enums are objects, they can have methods and lots more features than we
can get into here, in this short introduction.

21. PHP as a web app development
platform
PHP is a server-side language and it is typically used in 2 ways.

One is within an HTML page, so PHP is used to “add” stuff to the HTML
which is manually defined in the .php file. This is a perfectly fine way to use
PHP.

Another way considers PHP more like the engine that is responsible for
generating an “application”. The HTML is not written by you in a .php file
but instead you use a templating language to generate the HTML, and
everything is managed by what we call framework.

This is what happens when you use modern framework like Laravel.

I would consider the first way a bit “out of fashion” these days, and if you’re
just starting out you should know about those 2 different styles of using PHP,
but also consider using a framework like “easy mode” because frameworks
give you tools to handle routing, tools to access data from a database, they
make it easier to build more secure application. And make it all faster to
develop.

67

That said, we’re not going to talk about using frameworks in this handbook,
but I will talk about the basic, fundamental building blocks of PHP. They are
essentials that any PHP developer must know.

Just know that “in the real world” you might use your favorite framework’s
way of doing things rather than the lower level features offered by PHP.

This does not apply just to PHP of course, it’s an “issue” that happens with
any programming language.

21.1. Handling HTTP requests

Let’s start with handling HTTP requests.

PHP offers file-based routing by default. You create an index.php file and
that responds on the / path.

We saw that when we made the Hello World example in the beginning.

Similarly, you can create a test.php file and automatically that will be the
file that Apache serves on the /test route.

21.2. $_GET , $_POST and $_REQUEST

Files respond to all HTTP requests, including GET, POST and other verbs.

For any request you can access all the query string data using the $_GET
object which is called superglobal and is automatically available in all our
PHP files.

This is of course most useful in GET requests, but also other requests can
send data as query string.

For POST, PUT and DELETE requests you’re more likely to need the data
posted as urlencoded data or using the FormData object, which PHP makes
available to you using $_POST .

There is also $_REQUEST which contains all of $_GET and $_POST combined
in a single variable.

68

21.3. The $_SERVER object

We also have the superglobal variable $_SERVER , which you use to get a lot of
useful information.

You saw how to use phpinfo() before. Let’s use it again to see the things that
$_SERVER offers us.

In your index.php file in the root of MAMP run:

<?php
phpinfo();
?>

then generate the page at localhost:8888 and search $_SERVER , you will see
all the configuration stored and the values assigned:

Important ones you might use are

 $_SERVER['HTTP_HOST']

http://localhost:8888/

69

 $_SERVER['HTTP_USER_AGENT']

 $_SERVER['SERVER_NAME']

 $_SERVER['SERVER_ADDR']

 $_SERVER['SERVER_PORT']

 $_SERVER['DOCUMENT_ROOT']

 $_SERVER['REQUEST_URI']

 $_SERVER['SCRIPT_NAME']

 $_SERVER['REMOTE_ADDR']

21.4. Using forms in PHP

Forms are the way the Web platform allows users to interact with a page and
send data to the server.

Here is a simple form in HTML:

<form>
 <input type="text" name="name" />
 <input type="submit" />
</form>

You can put this in your index.php file like it was called index.html .

A PHP file assumes you write HTML in it with some “PHP sprinkles” using
 <?php ?> , so the Web Server can post that to the client. Sometimes the PHP
part takes all of the page, and that’s when you generate all the HTML via PHP
- it’s kind of the opposite of the approach we do here now.

So we have this index.php file that generates this form using plain HTML:

70

Pressing the Submit button will make a GET request to the same URL
sending the data via query string, notice the URL changed to
localhost:8888/?name=test

We can add some code to check if that parameter is set using the isset()
function

http://localhost:8888/?name=test
https://www.php.net/manual/en/function.isset.php

71

<form>
 <input type="text" name="name" />
 <input type="submit" />
</form>

<?php
if (isset($_GET['name'])) {
 echo '<p>The name is ' . $_GET['name'];
}
?>

See? We can get the information from the GET request query string through
 $_GET .

What you usually do with forms however is, you perform a POST request:

<form **method="POST"**>
 <input type="text" name="name" />
 <input type="submit" />
</form>

<?php
if (isset($_POST['name'])) {
 echo '<p>The name is ' . $_POST['name'];
}
?>

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/GET

72

See, now we got the same information but the URL didn’t change, the form
information was not appended to the URL.

This is because we’re using a POST request, which sends the data to the
server in a different way, through urlencoded data.

As mentioned, PHP will still serve the index.php file as we’re still sending
data to the same URL the form is on.

We’re mixing a bunch of code and we could separate the form request
handler from the code that generates the form.

So we can have in index.php this:

<form **method="POST" action="/post.php"**>
 <input type="text" name="name" />
 <input type="submit" />
</form>

and we can create a new post.php file with:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

73

<?php
if (isset($_POST['name'])) {
 echo '<p>The name is ' . $_POST['name'];
}
?>

PHP will display this content now after we submit the form, because we set
the action HTML attribute on the form.

This example is very simple, but the post.php file is where we could for
example save the data to the database, or to a file.

21.5. HTTP Headers

PHP lets us set the HTTP headers of a response through the header()
function.

HTTP Headers are a way to send information back to the browser.

We can say the page generates a 500 Internal Server Error:

<?php
header('HTTP/1.1 500 Internal Server Error');
?>

Now you should see the status if you access the page with the Browser
Developer Tools open:

https://flaviocopes.com/http-request-headers/
https://flaviocopes.com/browser-dev-tools/

74

We can set the content/type of a response:

header('Content-Type: text/json');

We can force a 301 redirect:

header('HTTP/1.1 301 Moved Permanently');
header('Location: https://flaviocopes.com');

We can use headers to say to the browser “cache this page”, “don’t cache this
page”, and a lot more!

21.6. Using cookies

Cookies are a browser feature.

When we send a response to the browser we can set a cookie and that will be
stored by the browser, client-side.

Then, every request the browser makes will include the cookie back to us.

75

We can do many things with cookies. They are mostly used to create a
personalized experience without you having to login to a service.

It’s important to note that cookies are domain-specific, so we can only read
cookies we set on the current domain of our application, not other
application’s cookies.

But JavaScript can read cookies (unless they are HttpOnly cookies but we’re
starting to go into a rabbit hole) so cookies should not store any sensitive
information.

We can use PHP to read the value of a cookie referencing the $_COOKIE
superglobal:

if (isset($_COOKIE['name'])) {
 $name = $_COOKIE['name'];
}

The setcookie() function allows you to set a cookie:

setcookie('name', 'Flavio');

We can add a third parameter to say when the cookie will expire. If omitted,
the cookie expires at the end of the session/when the browser is closed.

Use this code to make the cookie expire in 7 days:

setcookie('name', 'Flavio', time() + 3600 * 24 * 7);

We can only store a limited amount of data in a cookie, and users can clear
the cookies client-side when they clear the browser data.

Also, they are specific to the browser / device, so we can set a cookie in the
user’s browser, but if they change browser or device, the cookie will not be
available.

https://www.php.net/manual/en/function.setcookie.php

76

Let’s do a simple example with the form we used before. We’re going to store
the name entered as a cookie:

<?php
if (isset($_POST['name'])) {
 setcookie('name', $_POST['name']);
}
if (isset($_POST['name'])) {
 echo '<p>Hello ' . $_POST['name'];
} else {
 if (isset($_COOKIE['name'])) {
 echo '<p>Hello ' . $_COOKIE['name'];
 }
}
?>

<form method="POST">
 <input type="text" name="name" />
 <input type="submit" />
</form>

I added some conditionals to handle the case where the cookie was already
set, and to display the name right after the form is submitted, when the
cookie is not set yet (it will only be set for the next HTTP request).

If you open the Browser Developer Tools you should see the cookie in the
Storage tab.

From there you can inspect its value, and delete it if you want.

77

21.7. Sessions

One very interesting use case for cookies is cookie-based sessions.

PHP offers us a very easy way to create a cookie-based session using
 session_start() .

Try adding

<?php
session_start();
?>

in a PHP file, and load it in the browser.

You will see a new cookie named by default PHPSESSID with a value assigned.

That’s the session ID. This will be sent for every new request and PHP will
use that to identify the session.

78

Similarly to how we used cookies we can now use $_SESSION to store the
information sent by the user, but this time it’s not stored client-side.

Only the session ID is.

The data is stored server-side by PHP.

79

<?php
session_start();

if (isset($_POST['name'])) {
 $_SESSION['name'] = $_POST['name'];
}
if (isset($_POST['name'])) {
 echo '<p>Hello ' . $_POST['name'];
} else {
 if (isset($_SESSION['name'])) {
 echo '<p>Hello ' . $_SESSION['name'];
 }
}
?>

<form method="POST">
 <input type="text" name="name" />
 <input type="submit" />
</form>

80

This works for simple use cases, of course for intensive data you will need a
database.

To clear the session data you can call session_unset() .

To clear the session cookie use:

setcookie(session_name(), '');

21.8. Working with files/folders

PHP is a server-side language and one of the handy things it provides is
access to the filesystem.

You can check if a file exists using file_exists() :

file_exists('test.txt') //true

Get the size of a file using filesize() :

filesize('test.txt')

You can open a file using fopen() . Here we open the test.txt file in read-
only mode and we get what we call a file descriptor in $file :

$file = fopen('test.txt', 'r')

We can terminate the file access calling fclose($fd) .

Read the content of a file into a variable:

81

$file = fopen('test.txt', 'r')

fread($file, filesize('test.txt'));

//or

while (!feof($file)) {
 $data .= fgets($file, 5000);
}

 feof() checks that we haven’t reached the end of the file as fgets
reads 5000 bytes at a time

You can also read a file line by line using fgets() :

$file = fopen('test.txt', 'r')

while(!feof($file)) {
 $line = fgets($file);
 //do something
}

To write to a file you must first open it in write mode, then use fwrite() :

$data = 'test';
$file = fopen('test.txt', 'w')
fwrite($file, $data);
fclose($file);

We can delete a file using unlink() :

unlink('test.txt')

Those are the basics, of course there are more functions to work with files.

21.9. PHP and databases

PHP offers various built-in libraries to work with databases, for example:

https://www.php.net/manual/en/ref.filesystem.php

82

PostgreSQL
MySQL / MariaDB
MongoDB

I do not cover this in the handbook because I think this is a big topic and one
that would also require to learn SQL.

I am also tempted to say that if you need a database you should use a
framework or ORM that would save you security issues with SQL injection.
Laravel’s Eloquent is a great example.

21.10. JSON

JSON is a portable data format we use to represent data and send data from
client to server.

Here’s an example of a JSON representation of an object that contains a
string and a number:

{
 "name": "Flavio",
 "age": 35
}

PHP offers us two utility functions to work with JSON:

 json_encode() to encode a variable into JSON
 json_decode() to decode a JSON string into a data type (object, array…)

Example:

$test = ['a', 'b', 'c'];

$encoded = json_encode($test); // "["a","b","c"]" (a string)

$decoded = json_decode($encoded); // ["a", "b", "c"] (an array)

21.11. Sending emails

https://www.php.net/manual/en/book.pgsql.php
https://www.php.net/manual/en/set.mysqlinfo.php
https://www.php.net/manual/en/set.mongodb.php
https://laravel.com/docs/eloquent
https://flaviocopes.com/json/

83

One of the things that I like about PHP is the conveniences, like sending an
email.

Send an email using mail() :

mail('test@test.com', 'this subject', 'the body');

To send emails at scale we can’t rely on this solution, these emails tend to
reach the spam folder more often than not. But for quick testing this is just
helpful.

Libraries like https://github.com/PHPMailer/PHPMailer will be super
helpful for more solid needs, using an SMTP server.

22. Using Composer and Packagist
Composer is the package manager of PHP.

It allows you to easily install packages into your projects.

Install it on your machine (Linux/Mac or Windows) and once you’re done
you should have a composer command available on your terminal.

https://www.php.net/manual/en/function.mail.php
https://github.com/PHPMailer/PHPMailer
https://getcomposer.org/
https://getcomposer.org/doc/00-intro.md#installation-linux-unix-macos
https://getcomposer.org/doc/00-intro.md#installation-windows

84

Now inside your project you can run composer require <lib> and it will be
installed locally, for example le’ts install the Carbon library that helps us
work with dates in PHP

composer require nesbot/carbon

It will do some work:

https://carbon.nesbot.com/

85

Once it’s done, you will find some new things in the folder, composer.json
that lists the new configuration for the dependencies:

{
 "require": {
 "nesbot/carbon": "^2.58"
 }
}

 composer.lock which is used to “lock” the versions of the package in time, so
the exact same installation you have can be replicated on another server, and
the vendor folder, that contains the library just installed, and its
dependencies.

Now in the index.php file with we can add this code at the top:

86

<?php
require 'vendor/autoload.php';

use Carbon\Carbon;

and then we can use the library!

echo Carbon::now();

See? We didn’t have to manually download a package from the internet,
install it somewhere.. it was all fast, quick, and well organized.

The require 'vendor/autoload.php'; line is what enables autoloading.
Remember when we talked about require_once() and include_once() ?
This solves all of that, we don’t need to manually search for the file to
include, we just use the use keyword to import the library into our code.

23. Deploying PHP applications
When you’ve got an application ready, it’s time to deploy it and make it
accessible from anyone on the Web!

PHP is the programming language with the best deployment story across the
Web.

87

Trust me, every single other programming language and ecosystem wish they
were as easy as PHP.

The great thing about PHP, the thing it got right and allowed it to have the
incredible success it had, is the instant deploy.

You put a PHP file on a folder served by a Web server, voilà it just works.

No need to restart the server, run an executable, nothing.

This is still something that a lot of people do. You get a shared hosting for
3$/m, upload your files via FTP, done.

These days however I think Git deploy is something that should be baked into
every project, and shared hosting should be a thing of the past.

One solution is always having your own private VPS (Virtual Private Server),
which you can get from services like DigitalOcean or Linode.

But managing your own VPS is no joke, it requires serious knowledge and
time investment, and constant maintenance.

You can also use the so-called PaaS (Platform as a Service), which are
platforms that focus on taking care of all the boring stuff (managing servers)
and you just upload your app and it runs.

Solutions like DigitalOcean App Platform (which is different from a
DigitalOcean VPS), Heroku and many others are great for your first tests.

These services allow you to connect your GitHub account and deploy any
time you push a new change to your Git repository.

See how to setup Git and GitHub from zero

This is a much better workflow compared to FTP uploads.

Let’s do a bare bones example.

I created a simple PHP application with just an index.php file:

https://flaviocopes.com/git/
https://flaviocopes.com/github-setup-from-zero/

88

<?php
echo 'Hello!';
?>

I add the parent folder to my GitHub Desktop app, I initialize a Git repo and I
push it to GitHub:

Now go on digitalocean.com

If you don’t have an account yet, use my referral code to sign up get $100 free
credits over the next 60 days and you can work on your PHP app for free.

I connect to my DigitalOcean account and I go to Apps → Create App.

I connect my GitHub Account and select the repo of my app.

Make sure “Autodeploy” is checked, so the app will automatically redeploy on
changes:

http://digitalocean.com/
https://m.do.co/c/bd0657b4877c

89

Click “Next” then Edit Plan

90

By default the Pro plan is selected.

Use Basic and pick the $5/m plan.

NOTE: you pay $5 per month, but billing is per hour, so you can stop the
app any time you want

91

92

Then go back and press “Next” until the “Create Resources” button appears
to create the app. You don’t need any database otherwise that would be
another $7/m on top.

93

Now wait until the deployment is ready:

94

The app is now up and running!

95

24. Conclusion
You’ve reached the end of the PHP Handbook!

Thank you for reading through this introduction to the wonderful world of
PHP development. I hope it will help you get your web development job,
become better at your craft and empower you to work on your next big idea!

If you’re looking for more tutorials from me, I’m at https://flaviocopes.com,
check it out!

https://flaviocopes.com/

96

Conclusion
Thanks a lot for reading this book.

I hope it will inspire you to know more about PHP.

For more, head over to flaviocopes.com.

Send any feedback, errata or opinions at flavio@flaviocopes.com

https://flaviocopes.com/
mailto:flavio@flaviocopes.com

	Preface
	The PHP Handbook
	Conclusion

