

1

Table of Contents
Preface

The Next.js Handbook

Conclusion

2

Preface
The Next.js Handbook follows the 80/20 rule: learn in 20% of the time the
80% of a topic.

In particular, the goal is to get you up to speed quickly with Next.js.

This book is written by Flavio. I publish programming tutorials on my
blog flaviocopes.com and I organize a yearly bootcamp at bootcamp.dev.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://bootcamp.dev/
https://twitter.com/flaviocopes

3

The Next.js Handbook
1. Introduction
2. The main features provided by Next.js

2.0.1. Hot Code Reloading
2.0.2. Automatic Routing
2.0.3. Single File Components
2.0.4. Server Rendering
2.0.5. Ecosystem Compatibility
2.0.6. Automatic Code Splitting
2.0.7. Prefetching
2.0.8. Dynamic Components
2.0.9. Static Exports
2.0.10. TypeScript Support

3. Next.js vs Gatsby vs create-react-app
4. How to install Next.js

4.1. Using create-next-app
4.2. Manually create a Next.js app

5. Adding a second page to the site
6. Linking the two pages
7. Dynamic content with the router
8. Prefetching
9. Using the router to detect the active link
10. Using next/router
11. Feed data to the components using getInitialProps()
12. CSS
13. Populating the head tag with custom tags
14. Adding a wrapper component
15. API routes
16. Run code on the server side, or on the client side
17. Deploying the production version

4

1. Introduction
Working on a modern JavaScript application powered by React is awesome
until you realize that there are a couple problems related to rendering all the
content on the client-side.

First, the page takes longer to become visible to the user, because before the
content loads, all the JavaScript must load, and your application needs to run
to determine what to show on the page.

Second, if you are building a publicly available website, you have a content
SEO issue. Search engines are getting better at running and indexing
JavaScript apps, but it's much better if we can send them content instead of
letting them figure it out.

The solution to both of those problems is server rendering, also called
static pre-rendering.

Next.js is one React framework to do all of this in a very simple way, but it's
not limited to this. It's advertised by its creators as a zero-configuration,
single-command toolchain for React apps.

It provides a common structure that allows you to easily build a frontend
React application, and transparently handles server-side rendering for you.

2. The main features provided by
Next.js
Here is a non-exhaustive list of the main Next.js features:

2.0.1. Hot Code Reloading

Next.js reloads the page when it detects any change saved to disk.

2.0.2. Automatic Routing

https://nextjs.org/

5

Any URL is mapped to the filesystem, to files put in the pages folder, and
you don't need any configuration (you have customization options of course).

2.0.3. Single File Components

Using styled-jsx , completely integrated as built by the same team, it's
trivial to add styles scoped to the component.

2.0.4. Server Rendering

You can render React components on the server side, before sending the
HTML to the client.

2.0.5. Ecosystem Compatibility

Next.js plays well with the rest of the JavaScript, Node, and React ecosystem.

2.0.6. Automatic Code Splitting

Pages are rendered with just the libraries and JavaScript that they need, no
more. Instead of generating one single JavaScript file containing all the app
code, the app is broken up automatically by Next.js in several different
resources.

Loading a page only loads the JavaScript necessary for that particular page.

Next.js does that by analyzing the resources imported.

If only one of your pages imports the Axios library, for example, that specific
page will include the library in its bundle.

This ensures your first page load is as fast as it can be, and only future page
loads (if they will ever be triggered) will send the JavaScript needed to the
client.

There is one notable exception. Frequently used imports are moved into the
main JavaScript bundle if they are used in at least half of the site pages.

6

2.0.7. Prefetching

The Link component, used to link together different pages, supports a
 prefetch prop which automatically prefetches page resources (including
code missing due to code splitting) in the background.

2.0.8. Dynamic Components

You can import JavaScript modules and React Components dynamically.

2.0.9. Static Exports

Using the next export command, Next.js allows you to export a fully static
site from your app.

2.0.10. TypeScript Support

Next.js is written in TypeScript and as such comes with an excellent
TypeScript support.

3. Next.js vs Gatsby vs create-react-
app
Next.js, Gatsby, and create-react-app are amazing tools we can use to
power our applications.

Let's first say what they have in common. They all have React under the
hood, powering the entire development experience. They also abstract
webpack and all those low level things that we used to configure manually in
the good old days.

 create-react-app does not help you generate a server-side-rendered app
easily. Anything that comes with it (SEO, speed...) is only provided by tools
like Next.js and Gatsby.

https://flaviocopes.com/gatsby/
https://flaviocopes.com/react-create-react-app/
https://flaviocopes.com/webpack/

7

When is Next.js better than Gatsby?

They can both help with server-side rendering, but in 2 different ways.

The end result using Gatsby is a static site generator, without a server. You
build the site, and then you deploy the result of the build process statically on
Netlify or another static hosting site.

Next.js provides a backend that can server side render a response to request,
allowing you to create a dynamic website, which means you will deploy it on
a platform that can run Node.js.

Next.js can generate a static site too, but I would not say it's its main use
case.

If my goal was to build a static site, I'd have a hard time choosing and
perhaps Gatsby has a better ecosystem of plugins, including many for
blogging in particular.

Gatsby is also heavily based on GraphQL, something you might really like or
dislike depending on your opinions and needs.

4. How to install Next.js
To install Next.js, you need to have Node.js installed.

Make sure that you have the latest version of Node. Check with running node
-v in your terminal, and compare it to the latest LTS version listed on
https://nodejs.org/.

After you install Node.js, you will have the npm command available into
your command line.

If you have any trouble at this stage, I recommend the following tutorials I
wrote for you:

How to install Node.js
How to update Node.js

https://flaviocopes.com/graphql/
https://nodejs.org/
https://flaviocopes.com/node-installation/
https://flaviocopes.com/how-to-update-node/

8

An introduction to the npm package manager
Unix Shells Tutorial
How to use the macOS terminal
The Bash Shell

Now that you have Node, updated to the latest version, and npm , we're set!

We can choose 2 routes now: using create-next-app or the classic approach
which involves installing and setting up a Next app manually.

4.1. Using create-next-app

If you're familiar with create-react-app , create-next-app is the same thing
- except it creates a Next app instead of a React app, as the name implies.

I assume you have already installed Node.js, which, from version 5.2 (2+
years ago at the time of writing), comes with the npx command bundled.
This handy tool lets us download and execute a JavaScript command, and
we'll use it like this:

npx create-next-app

The command asks the application name (and creates a new folder for you
with that name), then downloads all the packages it needs (react , react-
dom , next), sets the package.json to:

https://flaviocopes.com/npm/
https://flaviocopes.com/shells/
https://flaviocopes.com/macos-terminal/
https://flaviocopes.com/bash/
https://flaviocopes.com/react-create-react-app/
https://flaviocopes.com/npx/

9

and you can immediately run the sample app by running npm run dev :

10

And here's the result on http://localhost:3000:

http://localhost:3000/

11

This is the recommended way to start a Next.js application, as it gives you
structure and sample code to play with. There's more than just that default
sample application; you can use any of the examples stored at
https://github.com/zeit/next.js/tree/canary/examples using the --example
option. For example try:

npx create-next-app --example blog-starter

Which gives you an immediately usable blog instance with syntax
highlighting too:

https://github.com/zeit/next.js/tree/canary/examples

12

4.2. Manually create a Next.js app

You can avoid create-next-app if you feel like creating a Next app from
scratch. Here's how: create an empty folder anywhere you like, for example in
your home folder, and go into it:

mkdir nextjs
cd nextjs

and create your first Next project directory:

mkdir firstproject
cd firstproject

Now use the npm command to initialize it as a Node project:

13

npm init -y

The -y option tells npm to use the default settings for a project, populating
a sample package.json file.

Now install Next and React:

npm install next react react-dom

Your project folder should now have 2 files:

 package.json (see my tutorial on it)
 package-lock.json (see my tutorial on package-lock)

and the node_modules folder.

Open the project folder using your favorite editor. My favorite editor is VS
Code. If you have that installed, you can run code . in your terminal to
open the current folder in the editor (if the command does not work for you,
see this)

https://flaviocopes.com/package-json/
https://flaviocopes.com/package-lock-json/
https://flaviocopes.com/vscode/
https://code.visualstudio.com/docs/setup/mac#_launching-from-the-command-line

14

Open package.json , which now has this content:

{
 "name": "firstproject",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "dependencies": {
 "next": "^9.1.2",
 "react": "^16.11.0",
 "react-dom": "^16.11.0"
 }
}

and replace the scripts section with:

"scripts": {
 "dev": "next",
 "build": "next build",
 "start": "next start"
}

to add the Next.js build commands, which we're going to use soon.

Tip: use "dev": "next -p 3001", to change the port and run, in this
example, on port 3001.

15

Now create a pages folder, and add an index.js file.

In this file, let's create our first React component.

We're going to use it as the default export:

const Index = () => (
 <div>
 <h1>Home page</h1>
 </div>
)

export default Index

Now using the terminal, run npm run dev to start the Next development
server.

This will make the app available on port 3000, on localhost.

16

Open http://localhost:3000 in your browser to see it.

http://localhost:3000/

17

5. Adding a second page to the site
Now that we have a good grasp of the tools we can use to help us develop
Next.js apps, let's continue from where we left our first app:

I want to add a second page to this website, a blog. It's going to be served into
 /blog , and for the time being it will just contain a simple static page, just
like our first index.js component:

18

After saving the new file, the npm run dev process already running is already
capable of rendering the page, without the need to restart it.

When we hit the URL http://localhost:3000/blog we have the new page:

http://localhost:3000/blog

19

and here's what the terminal told us:

20

Now the fact that the URL is /blog depends on just the filename, and its
position under the pages folder.

You can create a pages/hey/ho page, and that page will show up on the URL
http://localhost:3000/hey/ho.

What does not matter, for the URL purposes, is the component name inside
the file.

Try going and viewing the source of the page, when loaded from the server it
will list /_next/static/development/pages/blog.js as one of the bundles
loaded, and not /_next/static/development/pages/index.js like in the home
page. This is because thanks to automatic code splitting we don't need the
bundle that serves the home page. Just the bundle that serves the blog page.

We can also just export an anonymous function from blog.js :

export default () => (
 <div>
 <h1>Blog</h1>
 </div>
)

or if you prefer the non-arrow function syntax:

http://localhost:3000/hey/ho

21

export default function () {
 return (
 <div>
 <h1>Blog</h1>
 </div>
)
}

6. Linking the two pages
Now that we have 2 pages, defined by index.js and blog.js , we can
introduce links.

Normal HTML links within pages are done using the a tag:

Blog

We can't do do that in Next.js.

Why? We technically can, of course, because this is the Web and on the Web
things never break (that's why we can still use the <marquee> tag. But one of
the main benefits of using Next is that once a page is loaded, transitions to
other page are very fast thanks to client-side rendering.

If you use a plain a link:

const Index = () => (
 <div>
 <h1>Home page</h1>
 Blog
 </div>
)

export default Index

Now open the DevTools, and the Network panel in particular. The first
time we load http://localhost:3000/ we get all the page bundles loaded:

22

Now if you click the "Preserve log" button (to avoid clearing the Network
panel), and click the "Blog" link, this is what happens:

23

We got all that JavaScript from the server, again! But.. we don't need all that
JavaScript if we already got it. We'd just need the blog.js page bundle, the
only one that's new to the page.

To fix this problem, we use a component provided by Next, called Link.

We import it:

import Link from 'next/link'

and then we use it to wrap our link, like this:

24

import Link from 'next/link'

const Index = () => (
 <div>
 <h1>Home page</h1>
 <Link href='/blog'>
 <a>Blog
 </Link>
 </div>
)

export default Index

Now if you retry the thing we did previously, you'll be able to see that only
the blog.js bundle is loaded when we move to the blog page:

25

and the page loaded so faster than before, the browser usual spinner on the
tab didn't even appear. Yet the URL changed, as you can see. This is working
seamlessly with the browser History API.

This is client-side rendering in action.

What if you now press the back button? Nothing is being loaded, because the
browser still has the old index.js bundle in place, ready to load the /index
route. It's all automatic!

7. Dynamic content with the router
In the previous chapter we saw how to link the home to the blog page.

A blog is a great use case for Next.js, one we'll continue to explore in this
chapter by adding blog posts.

Blog posts have a dynamic URL. For example a post titled "Hello World"
might have the URL /blog/hello-world . A post titled "My second post"
might have the URL /blog/my-second-post .

This content is dynamic, and might be taken from a database, markdown
files or more.

Next.js can serve dynamic content based on a dynamic URL.

We create a dynamic URL by creating a dynamic page with the [] syntax.

How? We add a pages/blog/[id].js file. This file will handle all the dynamic
URLs under the /blog/ route, like the ones we mentioned above:
 /blog/hello-world , /blog/my-second-post and more.

In the file name, [id] inside the square brackets means that anything that's
dynamic will be put inside the id parameter of the query property of the
router.

Ok, that's a bit too many things at once.

What's the router?

https://flaviocopes.com/history-api/

26

The router is a library provided by Next.js.

We import it from next/router :

import { useRouter } from 'next/router'

and once we have useRouter , we instantiate the router object using:

const router = useRouter()

Once we have this router object, we can extract information from it.

In particular we can get the dynamic part of the URL in the [id].js file by
accessing router.query.id .

The dynamic part can also just be a portion of the URL, like post-
[id].js .

So let's go on and apply all those things in practice.

Create the file pages/blog/[id].js :

import { useRouter } from 'next/router'

export default () => {
 const router = useRouter()

 return (
 <>
 <h1>Blog post</h1>
 <p>Post id: {router.query.id}</p>
 </>
)
}

Now if you go to the http://localhost:3000/blog/test router, you should see
this:

27

We can use this id parameter to gather the post from a list of posts. From a
database, for example. To keep things simple we'll add a posts.json file in
the project root folder:

{
 "test": {
 "title": "test post",
 "content": "Hey some post content"
 },
 "second": {
 "title": "second post",
 "content": "Hey this is the second post content"
 }
}

Now we can import it and lookup the post from the id key:

28

import { useRouter } from 'next/router'
import posts from '../../posts.json'

export default () => {
 const router = useRouter()

 const post = posts[router.query.id]

 return (
 <>
 <h1>{post.title}</h1>
 <p>{post.content}</p>
 </>
)
}

Reloading the page should show us this result:

But it's not! Instead, we get an error in the console, and an error in the
browser, too:

29

Why? Because.. during rendering, when the component is initialized, the
data is not there yet. We'll see how to provide the data to the component with
getInitialProps in the next lesson.

For now, add a little if (!post) return <p></p> check before returning the
JSX:

30

import { useRouter } from 'next/router'
import posts from '../../posts.json'

export default () => {
 const router = useRouter()

 const post = posts[router.query.id]
 if (!post) return <p></p>

 return (
 <>
 <h1>{post.title}</h1>
 <p>{post.content}</p>
 </>
)
}

Now things should work. Initially the component is rendered without the
dynamic router.query.id information. After rendering, Next.js triggers an
update with the query value and the page displays the correct information.

And if you view source, there is that empty <p> tag in the HTML:

31

We'll soon fix this issue that fails to implement SSR and this harms both
loading times for our users, SEO and social sharing as we already discussed.

We can complete the blog example by listing those posts in pages/blog.js :

import posts from '../posts.json'

const Blog = () => (
 <div>
 <h1>Blog</h1>

 {Object.entries(posts).map((value, index) => {
 return <li key={index}>{value[1].title}
 })}

 </div>
)

export default Blog

32

And we can link them to the individual post pages, by importing Link from
 next/link and using it inside the posts loop:

import Link from 'next/link'
import posts from '../posts.json'

const Blog = () => (
 <div>
 <h1>Blog</h1>

 {Object.entries(posts).map((value, index) => {
 return (
 <li key={index}>
 <Link href='/blog/[id]' as={'/blog/' + value[0]}>
 <a>{value[1].title}
 </Link>

)
 })}

 </div>
)

export default Blog

8. Prefetching
I mentioned previously how the Link Next.js component can be used to
create links between 2 pages, and when you use it, Next.js transparently
handles frontend routing for us, so when a user clicks a link, frontend
takes care of showing the new page without triggering a new client/server
request and response cycle, as it normally happens with web pages.

There's another thing that Next.js does for you when you use Link .

As soon as an element wrapped within <Link> appears in the viewport
(which means it's visible to the website user), Next.js prefetches the URL it
points to, as long as it's a local link (on your website), making the application

33

super fast to the viewer.

This behavior is only being triggered in production mode (we'll talk about
this in-depth later), which means you have to stop the application if you are
running it with npm run dev , compile your production bundle with npm run
build and run it with npm run start instead.

Using the Network inspector in the DevTools you'll notice that any links
above the fold, at page load, start the prefetching as soon as the load event
has been fired on your page (triggered when the page is fully loaded, and
happens after the DOMContentLoaded event).

Any other Link tag not in the viewport will be prefetched when the user
scrolls and it

Prefetching is automatic on high speed connections (Wifi and 3g+
connections, unless the browser sends the Save-Data HTTP Header.

You can opt out from prefetching individual Link instances by setting the
 prefetch prop to false :

<Link href='/a-link' prefetch={false}>
 <a>A link
</Link>

9. Using the router to detect the
active link
One very important feature when working with links is determining what is
the current URL, and in particular assigning a class to the active link, so we
can style it differently from the other ones.

This is especially useful in your site header, for example.

The Next.js default Link component offered in next/link does not do this
automatically for us.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Save-Data

34

We can create a Link component ourselves, and we store it in a file Link.js
in the Components folder, and import that instead of the default next/link .

In this component, we'll first import React from react , Link from
 next/link and the useRouter hook from next/router .

Inside the component we determine if the current path name matches the
 href prop of the component, and if so we append the selected class to the
children.

We finally return this children with the updated class, using
 React.cloneElement() :

10. Using next/router
We already saw how to use the Link component to declaratively handle
routing in Next.js apps.

It's really handy to manage routing in JSX, but sometimes you need to trigger
a routing change programmatically.

In this case, you can access the Next.js Router directly, provided in the
 next/router package, and call its push() method.

import React from 'react'
import Link from 'next/link'
import { useRouter } from 'next/router'

export default ({ href, children }) => {
 const router = useRouter()

 let className = children.props.className || ''
 if (router.pathname === href) {
 className = `${className} selected`
 }

 return <Link href={href}>{React.cloneElement(children, { className })}</
}

35

Here's an example of accessing the router:

import { useRouter } from 'next/router'

export default () => {
 const router = useRouter()
 //...
}

Once we get the router object by invoking useRouter() , we can use its
methods.

This is the client side router, so methods should only be used in frontend
facing code. The easiest way to ensure this is to wrap calls in the
 useEffect() React hook, or inside componentDidMount() in React
stateful components.

The ones you'll likely use the most are push() and prefetch() .

 push() allows us to programmatically trigger a URL change, in the
frontend:

router.push('/login')

 prefetch() allows us to programmatically prefetch a URL, useful when we
don't have a Link tag which automatically handles prefetching for us:

router.prefetch('/login')

Full example:

36

import { useRouter } from 'next/router'

export default () => {
 const router = useRouter()

 useEffect(() => {
 router.prefetch('/login')
 })
}

You can also use the router to listen for route change events.

11. Feed data to the components
using getInitialProps()
In the previous chapter we had an issue with dynamically generating the post
page, because the component required some data up front, and when we
tried to get the data from the JSON file:

import { useRouter } from 'next/router'
import posts from '../../posts.json'

export default () => {
 const router = useRouter()

 const post = posts[router.query.id]

 return (
 <>
 <h1>{post.title}</h1>
 <p>{post.content}</p>
 </>
)
}

we got this error:

https://nextjs.org/docs#router-events

37

How do we solve this? And how do we make SSR work for dynamic routes?

We must provide the component with props, using a special function called
 getInitialProps() which is attached to the component.

To do so, first we name the component:

const Post = () => {
 //...
}

export default Post

then we add the function to it:

38

const Post = () => {
 //...
}

Post.getInitialProps = () => {
 //...
}

export default Post

This function gets an object as its argument, which contains several
properties. In particular, the thing we are interested into now is that we get
the query object, the one we used previously to get the post id.

So we can get it using the object destructuring syntax:

Post.getInitialProps = ({ query }) => {
 //...
}

Now we can return the post from this function:

Post.getInitialProps = ({ query }) => {
 return {
 post: posts[query.id],
 }
}

And we can also remove the import of useRouter , and we get the post from
the props property passed to the Post component:

39

import posts from '../../posts.json'

const Post = (props) => {
 return (
 <div>
 <h1>{props.post.title}</h1>
 <p>{props.post.content}</p>
 </div>
)
}

Post.getInitialProps = ({ query }) => {
 return {
 post: posts[query.id],
 }
}

export default Post

Now there will be no error, and SSR will be working as expected, as you can
see checking view source:

40

The getInitialProps function will be executed on the server side, but also
on the client side, when we navigate to a new page using the Link

component as we did.

It's important to note that getInitialProps gets, in the context object it
receives, in addition to the query object these other properties:

 pathname : the path section of URL
 asPath - String of the actual path (including the query) shows in the
browser

which in the case of calling http://localhost:3000/blog/test will
respectively result to:

 /blog/[id]

 /blog/test

And in the case of server side rendering, it will also receive:

 req : the HTTP request object
 res : the HTTP response object
 err : an error object

 req and res will be familiar to you if you've done any Node.js coding.

12. CSS
How do we style React components in Next.js?

We have a lot of freedom, because we can use whatever library we prefer.

But Next.js comes with styled-jsx built-in, because that's a library built by
the same people working on Next.js.

And it's a pretty cool library that provides us scoped CSS, which is great for
maintainability because the CSS is only affecting the component it's applied
to.

https://github.com/zeit/styled-jsx

41

I think this is a great approach at writing CSS, without the need to apply
additional libraries or preprocessors that add complexity.

To add CSS to a React component in Next.js we insert it inside a snippet in
the JSX, which start with

<style jsx>{`

and ends with

`}</style>

Inside this weird blocks we write plain CSS, as we'd do in a .css file:

<style jsx>{`
 h1 {
 font-size: 3rem;
 }
`}</style>

You write it inside the JSX, like this:

const Index = () => (
 <div>
 <h1>Home page</h1>

 <style jsx>{`
 h1 {
 font-size: 3rem;
 }
 `}</style>
 </div>
)

export default Index

42

Inside the block we can use interpolation to dynamically change the values.
For example here we assume a size prop is being passed by the parent
component, and we use it in the styled-jsx block:

const Index = (props) => (
 <div>
 <h1>Home page</h1>

 <style jsx>{`
 h1 {
 font-size: ${props.size}rem;
 }
 `}</style>
 </div>
)

If you want to apply some CSS globally, not scoped to a component, you add
the global keyword to the style tag:

<style jsx global>{`
 body {
 margin: 0;
 }
`}</style>

If you want to import an external CSS file in a Next.js component, you have
to first install @zeit/next-css :

npm install @zeit/next-css

and then create a configuration file in the root of the project, called
 next.config.js , with this content:

const withCSS = require('@zeit/next-css')
module.exports = withCSS()

43

After restarting the Next app, you can now import CSS like you normally do
with JavaScript libraries or components:

import '../style.css'

You can also import a SASS file directly, using the @zeit/next-sass library
instead.

13. Populating the head tag with
custom tags
From any Next.js page component, you can add information to the page
header.

This is handy when:

you want to customize the page title
you want to change a meta tag

How can you do so?

Inside every component you can import the Head component from
 next/head and include it in your component JSX output:

import Head from 'next/head'

const House = (props) => (
 <div>
 <Head>
 <title>The page title</title>
 </Head>
 {/* the rest of the JSX */}
 </div>
)

export default House

https://github.com/zeit/next-plugins/tree/master/packages/next-sass

44

You can add any HTML tag you'd like to appear in the <head> section of the
page.

When mounting the component, Next.js will make sure the tags inside Head
are added to the heading of the page. Same when unmounting the
component, Next.js will take care of removing those tags.

14. Adding a wrapper component
All the pages on your site look more or less the same. There's a chrome
window, a common base layer, and you just want to change what's inside.

There's a nav bar, a sidebar, and then the actual content.

How do you build such system in Next.js?

There are 2 ways. One is using a Higher Order Component, by creating a
 components/Layout.js component:

export default Page => {
 return () => (
 <div>
 <nav>

 </hav>
 <main>
 <Page />
 </main>
 </div>
)
}

In there we can import separate components for heading and/or sidebar, and
we can also add all the CSS we need.

And you use it in every page like this:

https://flaviocopes.com/react-higher-order-components/

45

import withLayout from '../components/Layout.js'

const Page = () => <p>Here's a page!</p>

export default withLayout(Page)

But I found this works only for simple cases, where you don't need to call
 getInitialProps() on a page.

Why?

Because getInitialProps() gets only called on the page component. But if
we export the Higher Order Component withLayout() from a page,
 Page.getInitialProps() is not called. withLayout.getInitialProps() would.

To avoid unnecessarily complicating our codebase, the alternative approach
is to use props:

export default props => (
 <div>
 <nav>

 </hav>
 <main>
 {props.content}
 </main>
 </div>
)

and in our pages now we use it like this:

import Layout from '../components/Layout.js'

const Page = () => <Layout content={<p>Here's a page!</p>} />

This approach lets us use getInitialProps() from within our page
component, with the only downside of having to write the component JSX
inside the content prop:

46

import Layout from '../components/Layout.js'

const Page = () => <Layout content={<p>Here's a page!</p>} />

Page.getInitialProps = ({ query }) => {
 //...
}

15. API routes
In addition to creating page routes, which means pages are served to the
browser as Web pages, Next.js can create API routes.

This is a very interesting feature because it means that Next.js can be used to
create a frontend for data that is stored and retrieved by Next.js itself,
transferring JSON via fetch requests.

API routes live under the /pages/api/ folder and are mapped to the /api
endpoint.

This feature is very useful when creating applications.

In those routes, we write Node.js code (rather than React code). It's a
paradigm shift, you move from the frontend to the backend, but very
seamlessly.

Say you have a /pages/api/comments.js file, whose goal is to return the
comments of a blog post as JSON.

Say you have a list of comments stored in a comments.json file:

47

[
 {
 "comment": "First"
 },
 {
 "comment": "Nice post"
 }
]

Here's a sample code, which returns to the client the list of comments:

import comments from './comments.json'

export default (req, res) => {
 res.status(200).json(comments)
}

It will listen on the /api/comments URL for GET requests, and you can try
calling it using your browser:

48

API routes can also use dynamic routing like pages, use the [] syntax to
create a dynamic API route, like /pages/api/comments/[id].js which will
retrieve the comments specific to a post id.

Inside the [id].js you can retrieve the id value by looking it up inside the
 req.query object:

import comments from '../comments.json'

export default (req, res) => {
 res.status(200).json({ post: req.query.id, comments })
}

Heres you can see the above code in action:

49

In dynamic pages, you'd need to import useRouter from next/router , then
get the router object using const router = useRouter() , and then we'd be
able to get the id value using router.query.id .

In the server-side it's all easier, as the query is attached to the request object.

If you do a POST request, all works in the same way - it all goes through that
default export.

To separate POST from GET and other HTTP methods (PUT, DELETE),
lookup the req.method value:

export default (req, res) => {
 switch (req.method) {
 case 'GET':
 //...
 break
 case 'POST':
 //...
 break
 default: //Method Not Allowed
 res.status(405).end()
 break
 }
}

50

In addition to req.query and req.method we already saw, we have access to
cookies by referencing req.cookies , the request body in req.body .

Under the hoods, this is all powered by Micro, a library that powers
asynchronous HTTP microservices, made by the same team that built
Next.js.

You can make use of any Micro middleware in our API routes to add more
functionality.

16. Run code on the server side, or
on the client side
In your page components, you can execute code only in the server-side or on
the client-side, by checking the window property.

This property is only existing inside the browser, so you can check

if (typeof window === 'undefined') {
}

and add the server-side code in that block.

Similarly, you can execute client-side code only by checking

if (typeof window !== 'undefined') {
}

JS Tip: We use the typeof operator here because we can't detect a value
to be undefined in other ways. We can't do if (window === undefined)
because we'd get a "window is not defined" runtime error

Next.js, as a build-time optimization, also removes the code that uses those
checks from bundles. A client-side bundle will not include the content
wrapped into a if (typeof window === 'undefined') {} block.

https://github.com/zeit/micro

51

17. Deploying the production
version
Deploying an app is always left last in tutorials.

Here I want to introduce it early, just because it's so easy to deploy a Next.js
app that we can dive into it now, and then move on to other more complex
topics later on.

Remember in the "How to install Next.js" chapter I told you to add those 3
lines to the package.json script section:

"scripts": {
 "dev": "next",
 "build": "next build",
 "start": "next start"
}

We used npm run dev up to now, to call the next command installed locally
in node_modules/next/dist/bin/next . This started the development server,
which provided us source maps and hot code reloading, two very useful
features while debugging.

The same command can be invoked to build the website passing the build
flag, by running npm run build . Then, the same command can be used to
start the production app passing the start flag, by running npm run start .

Those 2 commands are the ones we must invoke to successfully deploy the
production version of our site locally. The production version is highly
optimized and does not come with source maps and other things like hot
code reloading that would not be beneficial to our end users.

So, let's create a production deploy of our app. Build it using:

npm run build

52

The output of the command tells us that some routes (/ and /blog are
now prerendered as static HTML, while /blog/[id] will be served by the
Node.js backend.

Then you can run npm run start to start the production server locally:

npm run start

Visiting http://localhost:3000 will show us the production version of the
app, locally.

http://localhost:3000/

53

Conclusion
Thanks a lot for reading this book.

For more, head over to flaviocopes.com.

Send any feedback, errata or opinions at flavio@flaviocopes.com

https://flaviocopes.com/
mailto:flavio@flaviocopes.com

	Preface
	The Next.js Handbook
	Conclusion

