

 Table of Contents

 	

 Preface

 	

 The Linux Handbook

 	

 Conclusion

 Preface

 Preface

 The Linux Handbook follows the 80/20 rule: learn in 20% of the time the 80% of a topic.

In particular, the goal is to get you up to speed quickly with Linux.

This book is written by Flavio. I publish programming tutorials on my blog flaviocopes.com and I organize a yearly bootcamp at bootcamp.dev.

You can reach me on Twitter @flaviocopes.

Enjoy!

 The Linux Handbook

 The Linux Handbook

	1. Introduction to Linux

	2. man

	3. ls

	4. cd

	5. pwd

	6. mkdir

	7. rmdir

	8. mv

	9. cp

	10. open

	11. touch

	12. find

	13. ln

	14. gzip

	15. gunzip

	16. tar

	17. alias

	18. cat

	19. less

	20. tail

	21. wc

	22. grep

	23. sort

	24. uniq

	25. diff

	26. echo

	27. chown

	28. chmod

	29. umask

	30. du

	31. df

	32. basename

	33. dirname

	34. ps

	35. top

	36. kill

	37. killall

	38. jobs

	39. bg

	40. fg

	41. type

	42. which

	43. nohup

	44. xargs

	45. vim

	46. emacs

	47. nano

	48. whoami

	49. who

	50. su

	51. sudo

	52. passwd

	53. ping

	54. traceroute

	55. clear

	56. history

	57. export

	58. crontab

	59. uname

	60. env

	61. printenv

1. Introduction to Linux

Linux is an operating system, like macOS or Windows.

It is also the most popular Open Source and free, as in freedom, operating system.

It powers the vast majority of the servers that compose the Internet. It's the base upon which everything is built upon. But not just that. Android is based on (a modified version of) Linux.

The Linux "core" (called kernel) was born in 1991 in Finland, and it went a really long way from its humble beginnings. It went on to be the kernel of the GNU Operating System, creating the duo GNU/Linux.

There's one thing about Linux that corporations like Microsoft and Apple, or Google, will never be able to offer: the freedom to do whatever you want with your computer.

They're actually going in the opposite direction, building walled gardens, especially on the mobile side.

Linux is the ultimate freedom.

It is developed by volunteers, some paid by companies that rely on it, some independently, but there's no single commercial company that can dictate what goes into Linux, or the project priorities.

Linux can also be used as your day to day computer. I use macOS because I really enjoy the applications, the design and I also used to be an iOS and Mac apps developer, but before using it I used Linux as my main computer Operating System.

No one can dictate which apps you can run, or "call home" with apps that track you, your position, and more.

Linux is also special because there's not just "one Linux", like it happens on Windows or macOS.
Instead, we have distributions.

A "distro" is made by a company or organization and packages the Linux core with additional programs and tooling.

For example you have Debian, Red Hat, and Ubuntu, probably the most popular.

Many, many more exist. You can create your own distribution, too. But most likely you'll use a popular one, one that has lots of users and a community of people around it, so you can do what you need to do without losing too much time reinventing the wheel and figuring out answers to common problems.

Some desktop computers and laptops ship with Linux preinstalled. Or you can install it on your Windows-based computer, or on a Mac.

But you don't need to disrupt your existing computer just to get an idea of how Linux works.

I don't have a Linux computer.

If you use a Mac you need to know that under the hood macOS is a UNIX Operating System, and it shares a lot of the same ideas and software that a GNU/Linux system uses, because GNU/Linux is a free alternative to UNIX.

UNIX is an umbrella term that groups many operating systems used in big corporations and institutions, starting from the 70's

The macOS terminal gives you access to the same exact commands I'll describe in the rest of this handbook.

Microsoft has an official Windows Subsystem for Linux which you can (and should!) install on Windows. This will give you the ability to run Linux in a very easy way on your PC.

But the vast majority of the time you will run a Linux computer in the cloud via a VPS (Virtual Private Server) like DigitalOcean.

A shell is a command interpreter that exposes to the user an interface to work with the underlying operating system.

It allows you to execute operations using text and commands, and it provides users advanced features like being able to create scripts.

This is important: shells let you perform things in a more optimized way than a GUI (Graphical User Interface) could ever possibly let you do. Command line tools can offer many different configuration options without being too complex to use.

There are many different kind of shells. This post focuses on Unix shells, the ones that you will find commonly on Linux and macOS computers.

Many different kind of shells were created for those systems over time, and a few of them dominate the space: Bash, Csh, Zsh, Fish and many more!

All shells originate from the Bourne Shell, called sh. "Bourne" because its creator was Steve Bourne.

Bash means Bourne-again shell. sh was proprietary and not open source, and Bash was created in 1989 to create a free alternative for the GNU project and the Free Software Foundation. Since projects had to pay to use the Bourne shell, Bash became very popular.

If you use a Mac, try opening your Mac terminal. That by default is running ZSH. (or, pre-Catalina, Bash)

You can set up your system to run any kind of shell, for example I use the Fish shell.

Each single shell has its own unique features and advanced usage, but they all share a common functionality: they can let you execute programs, and they can be programmed.

In the rest of this handbook we'll see in detail the most common commands you will use.

2. man

The first command I want to introduce is a command that will help you understand all the other commands.

Every time I don't know how to use a command, I type man <command> to get the manual:

[image:]

This is a man (from manual) page. Man pages are an essential tool to learn, as a developer. They contain so much information that sometimes it's almost too much.

The above screenshot is just 1 of 14 screens of explanation for the ls command.

Most of the times when I'm in need to learn a command quickly I use this site called tldr pages: https://tldr.sh/. It's a command you can install, then you run it like this: tldr <command>, which gives you a very quick overview of a command, with some handy examples of common usage scenarios:

[image:]

This is not a substitute for man, but a handy tool to avoid losing yourself in the huge amount of information present in a man page. Then you can use the man page to explore all the different options and parameters you can use on a command.

3. ls

Inside a folder you can list all the files that the folder contains using the ls command:

ls

If you add a folder name or path, it will print that folder contents:

ls /bin

[image:]

ls accepts a lot of options. One of my favorite options combinations is -al. Try it:

ls -al /bin

[image:]

compared to the plain ls, this returns much more information.

You have, from left to right:

	the file permissions (and if your system supports ACLs, you get an ACL flag as well)

	the number of links to that file

	the owner of the file

	the group of the file

	the file size in bytes

	the file modified datetime

	the file name

This set of data is generated by the l option. The a option instead also shows the hidden files.

Hidden files are files that start with a dot (.).

4. cd

Once you have a folder, you can move into it using the cd command. cd means change directory. You invoke it specifying a folder to move into. You can specify a folder name, or an entire path.

Example:

mkdir fruits
cd fruits

Now you are into the fruits folder.

You can use the .. special path to indicate the parent folder:

cd .. #back to the home folder

The # character indicates the start of the comment, which lasts for the entire line after it's found.

You can use it to form a path:

mkdir fruits
mkdir cars
cd fruits
cd ../cars

There is another special path indicator which is ., and indicates the current folder.

You can also use absolute paths, which start from the root folder /:

cd /etc

This command works on Linux, macOS, WSL, and anywhere you have a UNIX environment

5. pwd

Whenever you feel lost in the filesystem, call the pwd command to know where you are:

pwd

It will print the current folder path.

6. mkdir

You create folders using the mkdir command:

mkdir fruits

You can create multiple folders with one command:

mkdir dogs cars

You can also create multiple nested folders by adding the -p option:

mkdir -p fruits/apples

Options in UNIX commands commonly take this form. You add them right after the command name, and they change how the command behaves. You can often combine multiple options, too.

You can find which options a command supports by typing man <commandname>. Try now with man mkdir for example (press the q key to esc the man page). Man pages are the amazing built-in help for UNIX.

7. rmdir

Just as you can create a folder using mkdir, you can delete a folder using rmdir:

mkdir fruits
rmdir fruits

You can also delete multiple folders at once:

mkdir fruits cars
rmdir fruits cars

The folder you delete must be empty.

To delete folders with files in them, we'll use the more generic rm command which deletes files and folders, using the -rf options:

rm -rf fruits cars

Be careful as this command does not ask for confirmation and it will immediately remove anything you ask it to remove.

There is no bin when removing files from the command line, and recovering lost files can be hard.

8. mv

Once you have a file, you can move it around using the mv command. You specify the file current path, and its new path:

touch pear
mv pear new_pear

The pear file is now moved to new_pear. This is how you rename files and folders.

If the last parameter is a folder, the file located at the first parameter path is going to be moved into that folder. In this case, you can specify a list of files and they will all be moved in the folder path identified by the last parameter:

touch pear
touch apple
mkdir fruits
mv pear apple fruits #pear and apple moved to the fruits folder

9. cp

You can copy a file using the cp command:

touch test
cp apple another_apple

To copy folders you need to add the -r option to recursively copy the whole folder contents:

mkdir fruits
cp -r fruits cars

10. open

The open command lets you open a file using this syntax:

open <filename>

You can also open a directory, which on macOS opens the Finder app with the current directory open:

open <directory name>

I use it all the time to open the current directory:

open .

The special . symbol points to the current directory, as .. points to the parent directory

The same command can also be be used to run an application:

open <application name>

11. touch

You can create an empty file using the touch command:

touch apple

If the file already exists, it opens the file in write mode, and the timestamp of the file is updated.

12. find

The find command can be used to find files or folders matching a particular search pattern. It searches recursively.

Let's learn it by example.

Find all the files under the current tree that have the .js extension and print the relative path of each file matching:

find . -name '*.js'

It's important to use quotes around special characters like * to avoid the shell interpreting them.

Find directories under the current tree matching the name "src":

find . -type d -name src

Use -type f to search only files, or -type l to only search symbolic links.

-name is case sensitive. use -iname to perform a case-insensitive search.

You can search under multiple root trees:

find folder1 folder2 -name filename.txt

Find directories under the current tree matching the name "node_modules" or 'public':

find . -type d -name node_modules -or -name public

You can also exclude a path, using -not -path:

find . -type d -name '*.md' -not -path 'node_modules/*'

You can search files that have more than 100 characters (bytes) in them:

find . -type f -size +100c

Search files bigger than 100KB but smaller than 1MB:

find . -type f -size +100k -size -1M

Search files edited more than 3 days ago

find . -type f -mtime +3

Search files edited in the last 24 hours

find . -type f -mtime -1

You can delete all the files matching a search by adding the -delete option. This deletes all the files edited in the last 24 hours:

find . -type f -mtime -1 -delete

You can execute a command on each result of the search. In this example we run cat to print the file content:

find . -type f -exec cat {} \;

notice the terminating \;. {} is filled with the file name at execution time.

13. ln

The ln command is part of the Linux file system commands.

It's used to create links. What is a link? It's like a pointer to another file. A file that points to another file. You might be familiar with Windows shortcuts. They're similar.

We have 2 types of links: hard links and soft links.

Hard links are rarely used. They have a few limitations: you can't link to directories, and you can't link to external filesystems (disks).

A hard link is created using

ln <original> <link>

For example, say you have a file called recipes.txt. You can create a hard link to it using:

ln recipes.txt newrecipes.txt

The new hard link you created is indistinguishable from a regular file:

[image:]

Now any time you edit any of those files, the content will be updated for both.

If you delete the original file, the link will still contain the original file content, as that's not removed until there is one hard link pointing to it.

[image:]

Soft links are different. They are more powerful as you can link to other filesystems and to directories, but when the original is removed, the link will be broken.

You create soft links using the -s option of ln:

ln -s <original> <link>

For example, say you have a file called recipes.txt. You can create a soft link to it using:

ln -s recipes.txt newrecipes.txt

In this case you can see there's a special l flag when you list the file using ls -al, and the file name has a @ at the end, and it's colored differently if you have colors enabled:

[image:]

Now if you delete the original file, the links will be broken, and the shell will tell you "No such file or directory" if you try to access it:

[image:]

14. gzip

You can compress a file using the gzip compression protocol named LZ77 using the gzip command.

Here's the simplest usage:

gzip filename

This will compress the file, and append a .gz extension to it. The original file is deleted. To prevent this, you can use the -c option and use output redirection to write the output to the filename.gz file:

gzip -c filename > filename.gz

The -c option specifies that output will go to the standard output stream, leaving the original file intact

Or you can use the -k option:

gzip -k filename

There are various levels of compression. The more the compression, the longer it will take to compress (and decompress). Levels range from 1 (fastest, worst compression) to 9 (slowest, better compression), and the default is 6.

You can choose a specific level with the -<NUMBER> option:

gzip -1 filename

You can compress multiple files by listing them:

gzip filename1 filename2

You can compress all the files in a directory, recursively, using the -r option:

gzip -r a_folder

The -v option prints the compression percentage information. Here's an example of it being used along with the -k (keep) option:

[image:]

gzip can also be used to decompress a file, using the -d option:

gzip -d filename.gz

15. gunzip

The gunzip command is basically equivalent to the gzip command, except the -d option is always enabled by default.

The command can be invoked in this way:

gunzip filename.gz

This will gunzip and will remove the .gz extension, putting the result in the filename file. If that file exists, it will overwrite that.

You can extract to a different filename using output redirection using the -c option:

gunzip -c filename.gz > anotherfilename

16. tar

The tar command is used to create an archive, grouping multiple files in a single file.

Its name comes from the past and means tape archive. Back when archives were stored on tapes.

This command creates an archive named archive.tar with the content of file1 and file2:

tar -cf archive.tar file1 file2

The c option stands for create. The f option is used to write to file the archive.

To extract files from an archive in the current folder, use:

tar -xf archive.tar

the x option stands for extract

and to extract them to a specific directory, use:

tar -xf archive.tar -C directory

You can also just list the files contained in an archive:

[image:]

tar is often used to create a compressed archive, gzipping the archive.

This is done using the z option:

tar -czf archive.tar.gz file1 file2

This is just like creating a tar archive, and then running gzip on it.

To unarchive a gzipped archive, you can use gunzip, or gzip -d, and then unarchive it, but tar -xf will recognize it's a gzipped archive, and do it for you:

tar -xf archive.tar.gz

17. alias

It's common to always run a program with a set of options you like using.

For example, take the ls command. By default it prints very little information:

[image:]

while using the -al option it will print something more useful, including the file modification date, the size, the owner, and the permissions, also listing hidden files (files starting with a .:

[image:]

You can create a new command, for example I like to call it ll, that is an alias to ls -al.

You do it in this way:

alias ll='ls -al'

Once you do, you can call ll just like it was a regular UNIX command:

[image:]

Now calling alias without any option will list the aliases defined:

[image:]

The alias will work until the terminal session is closed.

To make it permanent, you need to add it to the shell configuration, which could be ~/.bashrc or ~/.profile or ~/.bash_profile if you use the Bash shell, depending on the use case.

Be careful with quotes if you have variables in the command: using double quotes the variable is resolved at definition time, using single quotes it's resolved at invocation time. Those 2 are different:

alias lsthis="ls $PWD"
alias lscurrent='ls $PWD'

$PWD refers to the current folder the shell is into. If you now navigate away to a new folder, lscurrent lists the files in the new folder, lsthis still lists the files in the folder you were when you defined the alias.

18. cat

Similar to tail in some way, we have cat. Except cat can also add content to a file, and this makes it super powerful.

In its simplest usage, cat prints a file's content to the standard output:

cat file

You can print the content of multiple files:

cat file1 file2

and using the output redirection operator > you can concatenate the content of multiple files into a new file:

cat file1 file2 > file3

Using >> you can append the content of multiple files into a new file, creating it if it does not exist:

cat file1 file2 >> file3

When watching source code files it's great to see the line numbers, and you can have cat print them using the -n option:

cat -n file1

You can only add a number to non-blank lines using -b, or you can also remove all the multiple empty lines using -s.

cat is often used in combination with the pipe operator | to feed a file content as input to another command: cat file1 | anothercommand.

19. less

The less command is one I use a lot. It shows you the content stored inside a file, in a nice and interactive UI.

Usage: less <filename>.

[image:]

Once you are inside a less session, you can quit by pressing q.

You can navigate the file contents using the up and down keys, or using the space bar and b to navigate page by page. You can also jump to the end of the file pressing G and jump back to the start pressing g.

You can search contents inside the file by pressing / and typing a word to search. This searches forward. You can search backwards using the ? symbol and typing a word.

This command just visualises the file's content. You can directly open an editor by pressing v. It will use the system editor, which in most cases is vim.

Pressing the F key enters follow mode, or watch mode. When the file is changed by someone else, like from another program, you get to see the changes live. By default this is not happening, and you only see the file version at the time you opened it. You need to press ctrl-C to quit this mode. In this case the behaviour is similar to running the tail -f <filename> command.

You can open multiple files, and navigate through them using :n (to go to the next file) and :p (to go to the previous).

20. tail

The best use case of tail in my opinion is when called with the -f option. It opens the file at the end, and watches for file changes. Any time there is new content in the file, it is printed in the window. This is great for watching log files, for example:

tail -f /var/log/system.log

To exit, press ctrl-C.

You can print the last 10 lines in a file:

tail -n 10 <filename>

You can print the whole file content starting from a specific line using + before the line number:

tail -n +10 <filename>

tail can do much more and as always my advice is to check man tail.

21. wc

The wc command gives us useful information about a file or input it receives via pipes.

echo test >> test.txt
wc test.txt
1 1 5 test.txt

Example via pipes, we can count the output of running the ls -al command:

ls -al | wc
6 47 284

The first column returned is the number of lines. The second is the number of words. The third is the number of bytes.

We can tell it to just count the lines:

wc -l test.txt

or just the words:

wc -w test.txt

or just the bytes:

wc -c test.txt

Bytes in ASCII charsets equate to characters, but with non-ASCII charsets, the number of characters might differ because some characters might take multiple bytes, for example this happens in Unicode.

In this case the -m flag will help getting the correct value:

wc -m test.txt

22. grep

The grep command is a very useful tool, that when you master will help you tremendously in your day to day.

If you're wondering, grep stands for global regular expression print

You can use grep to search in files, or combine it with pipes to filter the output of another command.

For example here's how we can find the occurences of the document.getElementById line in the index.md file:

grep document.getElementById index.md

[image:]

Using the -n option it will show the line numbers:

grep -n document.getElementById index.md

[image:]

One very useful thing is to tell grep to print 2 lines before, and 2 lines after the matched line, to give us more context. That's done using the -C option, which accepts a number of lines:

grep -nC 2 document.getElementById index.md

[image:]

Search is case sensitive by default. Use the -i flag to make it insensitive.

As mentioned, you can use grep to filter the output of another command. We can replicate the same functionality as above using:

less index.md | grep -n document.getElementById

[image:]

The search string can be a regular expression, and this makes grep very powerful.

Another thing you might find very useful is to invert the result, excluding the lines that match a particular string, using the -v option:

[image:]

23. sort

Suppose you have a text file which contains the names of dogs:

[image:]

This list is unordered.

The sort command helps us sorting them by name:

[image:]

Use the r option to reverse the order:

[image:]

Sorting by default is case sensitive, and alphabetic. Use the --ignore-case option to sort case insensitive, and the -n option to sort using a numeric order.

If the file contains duplicate lines:

[image:]

You can use the -u option to remove them:

[image:]

sort does not just works on files, as many UNIX commands it also works with pipes, so you can use on the output of another command, for example you can order the files returned by ls with:

ls | sort

sort is very powerful and has lots more options, which you can explore calling man sort.

[image:]

24. uniq

uniq is a command useful to sort lines of text.

You can get those lines from a file, or using pipes from the output of another command:

uniq dogs.txt

ls | uniq

You need to consider this key thing: uniq will only detect adjacent duplicate lines.

This implies that you will most likely use it along with sort:

sort dogs.txt | uniq

The sort command has its own way to remove duplicates with the -u (unique) option. But uniq has more power.

By default it removes duplicate lines:

[image:]

You can tell it to only display duplicate lines, for example, with the -d option:

sort dogs.txt | uniq -d

[image:]

You can use the -u option to only display non-duplicate lines:

[image:]

You can count the occurrences of each line with the -c option:

[image:]

Use the special combination:

sort dogs.txt | uniq -c | sort -nr

to then sort those lines by most frequent:

[image:]

25. diff

diff is a handy command. Suppose you have 2 files, which contain almost the same information, but you can't find the difference between the two.

diff will process the files and will tell you what's the difference.

Suppose you have 2 files: dogs.txt and moredogs.txt. The difference is that moredogs.txt contains one more dog name:

[image:]

diff dogs.txt moredogs.txt will tell you the second file has one more line, line 3 with the line Vanille:

[image:]

If you invert the order of the files, it will tell you that the second file is missing line 3, whose content is Vanille:

[image:]

Using the -y option will compare the 2 files line by line:

[image:]

The -u option however will be more familiar to you, because that's the same used by the Git version control system to display differences between versions:

[image:]

Comparing directories works in the same way. You must use the -r option to compare recursively (going into subdirectories):

[image:]

In case you're interested in which files differ, rather than the content, use the r and q options:

[image:]

There are many more options you can explore in the man page running man diff:

[image:]

26. echo

The echo command does one simple job: it prints to the output the argument passed to it.

This example:

echo "hello"

will print hello to the terminal.

We can append the output to a file:

echo "hello" >> output.txt

We can interpolate environment variables:

echo "The path variable is $PATH"

[image:]

Beware that special characters need to be escaped with a backslash \. $ for example:

[image:]

This is just the start. We can do some nice things when it comes to interacting with the shell features.

We can echo the files in the current folder:

echo *

We can echo the files in the current folder that start with the letter o:

echo o*

Any valid Bash (or any shell you are using) command and feature can be used here.

You can print your home folder path:

echo ~

[image:]

You can also execute commands, and print the result to the standard output (or to file, as you saw):

echo $(ls -al)

[image:]

Note that whitespace is not preserved by default. You need to wrap the command in double quotes to do so:

[image:]

You can generate a list of strings, for example ranges:

echo {1..5}

[image:]

27. chown

Every file/directory in an Operating System like Linux or macOS (and every UNIX systems in general) has an owner.

The owner of a file can do everything with it. It can decide the fate of that file.

The owner (and the root user) can change the owner to another user, too, using the chown command:

chown <owner> <file>

Like this:

chown flavio test.txt

For example if you have a file that's owned by root, you can't write to it as another user:

[image:]

You can use chown to transfer the ownership to you:

[image:]

It's rather common to have the need to change the ownership of a directory, and recursively all the files contained, plus all the subdirectories and the files contained in them, too.

You can do so using the -R flag:

chown -R <owner> <file>

Files/directories don't just have an owner, they also have a group. Through this command you can change that simultaneously while you change the owner:

chown <owner>:<group> <file>

Example:

chown flavio:users test.txt

You can also just change the group of a file using the chgrp command:

chgrp <group> <filename>

28. chmod

Every file in the Linux / macOS Operating Systems (and UNIX systems in general) has 3 permissions: Read, write, execute.

Go into a folder, and run the ls -al command.

[image:]

The weird strings you see on each file line, like drwxr-xr-x, define the permissions of the file or folder.

Let's dissect it.

The first letter indicates the type of file:

	- means it's a normal file

	d means it's a directory

	l means it's a link

Then you have 3 sets of values:

	The first set represents the permissions of the owner of the file

	The second set represents the permissions of the members of the group the file is associated to

	The third set represents the permissions of the everyone else

Those sets are composed by 3 values. rwx means that specific persona has read, write and execution access. Anything that is removed is swapped with a -, which lets you form various combinations of values and relative permissions: rw-, r--, r-x, and so on.

You can change the permissions given to a file using the chmod command.

chmod can be used in 2 ways. The first is using symbolic arguments, the second is using numeric arguments. Let's start with symbols first, which is more intuitive.

You type chmod followed by a space, and a letter:

	a stands for all

	u stands for user

	g stands for group

	o stands for others

Then you type either + or - to add a permission, or to remove it. Then you enter one or more permissions symbols (r, w, x).

All followed by the file or folder name.

Here are some examples:

chmod a+r filename #everyone can now read
chmod a+rw filename #everyone can now read and write
chmod o-rwx filename #others (not the owner, not in the same group of the file) cannot read, write or execute the file

You can apply the same permissions to multiple personas by adding multiple letters before the +/-:

chmod og-r filename #other and group can't read any more

In case you are editing a folder, you can apply the permissions to every file contained in that folder using the -r (recursive) flag.

Numeric arguments are faster but I find them hard to remember when you are not using them day to day. You use a digit that represents the permissions of the persona. This number value can be a maximum of 7, and it's calculated in this way:

	1 if has execution permission

	2 if has write permission

	4 if has read permission

This gives us 4 combinations:

	0 no permissions

	1 can execute

	2 can write

	3 can write, execute

	4 can read

	5 can read, execute

	6 can read, write

	7 can read, write and execute

We use them in pairs of 3, to set the permissions of all the 3 groups altogether:

chmod 777 filename
chmod 755 filename
chmod 644 filename

29. umask

When you create a file, you don't have to decide permissions up front. Permissions have defaults.

Those defaults can be controlled and modified using the umask command.

Typing umask with no arguments will show you the current umask, in this case 0022:

[image:]

What does 0022 mean? That's an octal value that represent the permissions.

Another common value is 0002.

Use umask -S to see a human-readable notation:

[image:]

In this case, the user (u), owner of the file, has read, write and execution permissions on files.

Other users belonging to the same group (g) have read and execution permission, same as all the other users (o).

In the numeric notation, we typically change the last 3 digits.

Here's a list that gives a meaning to the number:

	0 read, write, execute

	1 read and write

	2 read and execute

	3 read only

	4 write and execute

	5 write only

	6 execute only

	7 no permissions

Note that this numeric notation differs from the one we use in chmod.

We can set a new value for the mask setting the value in numeric format:

umask 002

or you can change a specific role's permission:

umask g+r

30. du

The du command will calculate the size of a directory as a whole:

du

[image:]

The 32 number here is a value expressed in bytes.

Running du * will calculate the size of each file individually:

[image:]

You can set du to display values in MegaBytes using du -m, and GigaBytes using du -g.

The -h option will show a human-readable notation for sizes, adapting to the size:

[image:]

Adding the -a option will print the size of each file in the directories, too:

[image:]

A handy thing is to sort the directories by size:

du -h <directory> | sort -nr

and then piping to head to only get the first 10 results:

[image:]

31. df

The df command is used to get disk usage information.

Its basic form will print information about the volumes mounted:

[image:]

Using the -h option (df -h) will show those values in a human-readable format:

[image:]

You can also specify a file or directory name to get information about the specific volume it lives on:

[image:]

32. basename

Suppose you have a path to a file, for example /Users/flavio/test.txt.

Running

basename /Users/flavio/test.txt

will return the test.txt string:

[image:]

If you run basename on a path string that points to a directory, you will get the last segment of the path. In this example, /Users/flavio is a directory:

[image:]

33. dirname

Suppose you have a path to a file, for example /Users/flavio/test.txt.

Running

dirname /Users/flavio/test.txt

will return the /Users/flavio string:

[image:]

34. ps

Your computer is running, at all times, tons of different processes.

You can inspect them all using the ps command:

[image:]

This is the list of user-initiated processes currently running in the current session.

Here I have a few fish shell instances, mostly opened by VS Code inside the editor, and an instances of Hugo running the development preview of a site.

Those are just the commands assigned to the current user. To list all processes we need to pass some options to ps.

The most common I use is ps ax:

[image:]

The a option is used to also list other users processes, not just our own. x shows processes not linked to any terminal (not initiated by users through a terminal).

As you can see, the longer commands are cut. Use the command ps axww to continue the command listing on a new line instead of cutting it:

[image:]

We need to specify w 2 times to apply this setting, it's not a typo.

You can search for a specific process combining grep with a pipe, like this:

ps axww | grep "Visual Studio Code"

[image:]

The columns returned by ps represent some key information.

The first information is PID, the process ID. This is key when you want to reference this process in another command, for example to kill it.

Then we have TT that tells us the terminal id used.

Then STAT tells us the state of the process:

I a process that is idle (sleeping for longer than about 20 seconds)
R a runnable process
S a process that is sleeping for less than about 20 seconds
T a stopped process
U a process in uninterruptible wait
Z a dead process (a zombie)

If you have more than one letter, the second represents further information, which can be very technical.

It's common to have + which indicates the process is in the foreground in its terminal. s means the process is a session leader.

TIME tells us how long the process has been running.

35. top

A quick guide to the top command, used to list the processes running in real time

The top command is used to display dynamic real-time information about running processes in the system.

It's really handy to understand what is going on.

Its usage is simple, you just type top, and the terminal will be fully immersed in this new view:

[image:]

The process is long-running. To quit, you can type the q letter or ctrl-C.

There's a lot of information being given to us: the number of processes, how many are running or sleeping, the system load, the CPU usage, and a lot more.

Below, the list of processes taking the most memory and CPU is constantly updated.

By default, as you can see from the %CPU column highlighted, they are sorted by the CPU used.

You can add a flag to sort processes by memory utilized:

top -o mem

36. kill

Linux processes can receive signals and react to them.

That's one way we can interact with running programs.

The kill program can send a variety of signals to a program.

It's not just used to terminate a program, like the name would suggest, but that's its main job.

We use it in this way:

kill <PID>

By default, this sends the TERM signal to the process id specified.

We can use flags to send other signals, including:

kill -HUP <PID>
kill -INT <PID>
kill -KILL <PID>
kill -TERM <PID>
kill -CONT <PID>
kill -STOP <PID>

HUP means hang up. It's sent automatically when a terminal window that started a process is closed before terminating the process.

INT means interrupt, and it sends the same signal used when we press ctrl-C in the terminal, which usually terminates the process.

KILL is not sent to the process, but to the operating system kernel, which immediately stops and terminates the process.

TERM means terminate. The process will receive it and terminate itself. It's the default signal sent by kill.

CONT means continue. It can be used to resume a stopped process.

STOP is not sent to the process, but to the operating system kernel, which immediately stops (but does not terminate) the process.

You might see numbers used instead, like kill -1 <PID>. In this case,

1 corresponds to HUP.
2 corresponds to INT.
9 corresponds to KILL.
15 corresponds to TERM.
18 corresponds to CONT.
15 corresponds to STOP.

37. killall

Similar to the kill command, killall instead of sending a signal to a specific process id will send the signal to multiple processes at once.

This is the syntax:

killall <name>

where name is the name of a program. For example you can have multiple instances of the top program running, and killall top will terminate them all.

You can specify the signal, like with kill (and check the kill tutorial to read more about the specific kinds of signals we can send), for example:

killall -HUP top

38. jobs

When we run a command in Linux / macOS, we can set it to run in the background using the & symbol after the command. For example we can run top in the background:

top &

This is very handy for long-running programs.

We can get back to that program using the fg command. This works fine if we just have one job in the background, otherwise we need to use the job number: fg 1, fg 2 and so on. To get the job number, we use the jobs command.

Say we run top & and then top -o mem &, so we have 2 top instances running. jobs will tell us this:

[image:]

Now we can switch back to one of those using fg <jobid>. To stop the program again we can hit cmd-Z.

Running jobs -l will also print the process id of each job.

39. bg

When a command is running you can suspend it using ctrl-Z.

The command will immediately stop, and you get back to the shell terminal.

You can resume the execution of the command in the background, so it will keep running but it will not prevent you from doing other work in the terminal.

In this example I have 2 commands stopped:

[image:]

I can run bg 1 to resume in the background the execution of the job #1.

I could have also said bg without any option, as the default is to pick the job #1 in the list.

40. fg

When a command is running in the background, because you started it with & at the end (example: top & or because you put it in the background with the bg command, you can put it to the foreground using fg.

Running

fg

will resume to the foreground the last job that was suspended.

You can also specify which job you want to resume to the foreground passing the job number, which you can get using the jobs command.

[image:]

Running fg 2 will resume job #2:

[image:]

41. type

A command can be one of those 4 types:

	an executable

	a shell built-in program

	a shell function

	an alias

The type command can help figure out this, in case we want to know or we're just curious. It will tell you how the command will be interpreted.

The output will depend on the shell used. This is Bash:

[image:]

This is Zsh:

[image:]

This is Fish:

[image:]

One of the most interesting things here is that for aliases it will tell you what is aliasing to. You can see the ll alias, in the case of Bash and Zsh, but Fish provides it by default, so it will tell you it's a built-in shell function.

42. which

Suppose you have a command you can execute, because it's in the shell path, but you want to know where it is located.

You can do so using which. The command will return the path to the command specified:

[image:]

which will only work for executables stored on disk, not aliases or built-in shell functions.

43. nohup

Sometimes you have to run a long-lived process on a remote machine, and then you need to disconnect.

Or you simply want to prevent the command to be halted if there's any network issue between you and the server.

The way to make a command run even after you log out or close the session to a server is to use the nohup command.

Use nohup <command> to let the process continue working even after you log out.

44. xargs

The xargs command is used in a UNIX shell to convert input from standard input into arguments to a command.

In other words, through the use of xargs the output of a command is used as the input of another command.

Here's the syntax you will use:

command1 | xargs command2

We use a pipe (|) to pass the output to xargs. That will take care of running the command2 command, using the output of command1 as its argument(s).

Let's do a simple example. You want to remove some specific files from a directory. Those files are listed inside a text file.

We have 3 files: file1, file2, file3.

In todelete.txt we have a list of files we want to delete, in this example file1 and file3:

[image:]

We will channel the output of cat todelete.txt to the rm command, through xargs.

In this way:

cat todelete.txt | xargs rm

That's the result, the files we listed are now deleted:

[image:]

The way it works is that xargs will run rm 2 times, one for each line returned by cat.

This is the simplest usage of xargs. There are several options we can use.

One of the most useful in my opinion, especially when starting to learn xargs, is -p. Using this option will make xargs print a confirmation prompt with the action it's going to take:

[image:]

The -n option lets you tell xargs to perform one iteration at a time, so you can individually confirm them with -p. Here we tell xargs to perform one iteration at a time with -n1:

[image:]

The -I option is another widely used one. It allows you to get the output into a placeholder, and then you can do various things.

One of them is to run multiple commands:

command1 | xargs -I % /bin/bash -c 'command2 %; command3 %'

[image:]

You can swap the % symbol I used above with anything else, it's a variable

45. vim

vim is a very popular file editor, especially among programmers. It's actively developed and frequently updated, and there's a very big community around it. There's even a Vim conference!

vi in modern systems is just an alias to vim, which means vi improved.

You start it by running vi on the command line.

[image:]

You can specify a filename at invocation time to edit that specific file:

vi test.txt

[image:]

You have to know that Vim has 2 main modes:

	command (or normal) mode

	insert mode

When you start the editor, you are in command mode. You can't enter text like you expect from a GUI-based editor. You have to enter insert mode. You can do this by pressing the i key. Once you do so, the -- INSERT -- word appear at the bottom of the editor:

[image:]

Now you can start typing and filling the screen with the file contents:

[image:]

You can move around the file with the arrow keys, or using the h - j - k - l keys. h-l for left-right, j-k for down-up.

Once you are done editing you can press the esc key to exit insert mode, and go back to command mode.

[image:]

At this point you can navigate the file, but you can't add content to it (and be careful which keys you press as they might be commands).

One thing you might want to do now is saving the file. You can do so by pressing : (colon), then w.

You can save and quit pressing : then w and q: :wq

You can quit without saving, pressing : then q and !: :q!

You can undo and edit by going to command mode and pressing u. You can redo (cancel an undo) by pressing ctrl-r.

Those are the basics of working with Vim. From here starts a rabbit hole we can't go into in this little introduction.

I will only mention those commands that will get you started editing with Vim:

	pressing the x key deletes the character currently highlighted

	pressing A goes at the end of the currently selected line

	press 0 to go to the start of the line

	go to the first character of a word and press d followed by w to delete that word. If you follow it with e instead of w, the white space before the next word is preserved

	use a number between d and w to delete more than 1 word, for example use d3w to delete 3 words forward

	press d followed by d to delete a whole entire line. Press d followed by $ to delete the entire line from where the cursor is, until the end

To find out more about Vim I can recommend the Vim FAQ and especially running the vimtutor command, which should already be installed in your system and will greatly help you start your vim explorations.

46. emacs

emacs is an awesome editor and it's historically regarded as the editor for UNIX systems. Famously vi vs emacs flame wars and heated discussions caused many unproductive hours for developers around the world.

emacs is very powerful. Some people use it all day long as a kind of operating system (https://news.ycombinator.com/item?id=19127258). We'll just talk about the basics here.

You can open a new emacs session simply by invoking emacs:

[image:]

macOS users, stop a second now. If you are on Linux there are no problems, but macOS does not ship applications using GPLv3, and every built-in UNIX command that has been updated to GPLv3 has not been updated. While there is a little problem with the commands I listed up to now, in this case using an emacs version from 2007 is not exactly the same as using a version with 12 years of improvements and change. This is not a problem with Vim, which is up to date. To fix this, run brew install emacs and running emacs will use the new version from Homebrew (make sure you have Homebrew installed)

You can also edit an existing file calling emacs <filename>:

[image:]

You can start editing and once you are done, press ctrl-x followed by ctrl-w. You confirm the folder:

[image:]

and Emacs tell you the file exists, asking you if it should overwrite it:

[image:]

Answer y, and you get a confirmation of success:

[image:]

You can exit Emacs pressing ctrl-x followed by ctrl-c.
Or ctrl-x followed by c (keep ctrl pressed).

There is a lot to know about Emacs. More than I am able to write in this little introduction. I encourage you to open Emacs and press ctrl-h r to open the built-in manual and ctrl-h t to open the official tutorial.

47. nano

nano is a beginner friendly editor.

Run it using nano <filename>.

You can directly type characters into the file without worrying about modes.

You can quit without editing using ctrl-X. If you edited the file buffer, the editor will ask you for confirmation and you can save the edits, or discard them. The help at the bottom shows you the keyboard commands that let you work with the file:

[image:]

pico is more or less the same, although nano is the GNU version of pico which at some point in history was not open source and the nano clone was made to satisfy the GNU operating system license requirements.

48. whoami

Type whoami to print the user name currently logged in to the terminal session:

[image:]

Note: this is different from the who am i command, which prints more information

49. who

The who command displays the users logged in to the system.

Unless you're using a server multiple people have access to, chances are you will be the only user logged in, multiple times:

[image:]

Why multiple times? Because each shell opened will count as an access.

You can see the name of the terminal used, and the time/day the session was started.

The -aH flags will tell who to display more information, including the idle time and the process ID of the terminal:

[image:]

The special who am i command will list the current terminal session details:

[image:]

[image:]

50. su

While you're logged in to the terminal shell with one user, you might have the need to switch to another user.

For example you're logged in as root to perform some maintenance, but then you want to switch to a user account.

You can do so with the su command:

su <username>

For example: su flavio.

If you're logged in as a user, running su without anything else will prompt to enter the root user password, as that's the default behavior.

[image:]

su will start a new shell as another user.

When you're done, typing exit in the shell will close that shell, and will return back to the current user's shell.

51. sudo

sudo is commonly used to run a command as root.

You must be enabled to use sudo, and once you do, you can run commands as root by entering your user's password (not the root user password).

The permissions are highly configurable, which is great especially in a multi-user server environment, and some users can be granted access to running specific commands through sudo.

For example you can edit a system configuration file:

sudo nano /etc/hosts

which would otherwise fail to save since you don't have the permissions
for it.

You can run sudo -i to start a shell as root:

[image:]

You can use sudo to run commands as any user. root is the default, but use the -u option to specify another user:

sudo -u flavio ls /Users/flavio

52. passwd

Users in Linux have a password assigned. You can change the password using the passwd command.

There are two situations here.

The first is when you want to change your password. In this case you type:

passwd

and an interactive prompt will ask you for the old password, then it will ask you for the new one:

[image:]

When you're root (or have superuser privileges) you can set the username of which you want to change the password:

passwd <username> <new password>

In this case you don't need to enter the old one.

53. ping

The ping command pings a specific network host, on the local network or on the Internet.

You use it with the syntax ping <host> where <host> could be a domain name, or an IP address.

Here's an example pinging google.com:

[image:]

The commands sends a request to the server, and the server returns a response.

ping keep sending the request every second, by default, and will keep running until you stop it with ctrl-C, unless you pass the number of times you want to try with the -c option: ping -c 2 google.com.

Once ping is stopped, it will print some statistics about the results: the percentage of packages lost, and statistics about the network performance.

As you can see the screen prints the host IP address, and the time that it took to get the response back.

Not all servers support pinging, in case the requests times out:

[image:]

Sometimes this is done on purpose, to "hide" the server, or just to reduce the load. The ping packets can also be filtered by firewalls.

ping works using the ICMP protocol (Internet Control Message Protocol), a network layer protocol just like TCP or UDP.

The request sends a packet to the server with the ECHO_REQUEST message, and the server returns a ECHO_REPLY message. I won't go into details, but this is the basic concept.

Pinging a host is useful to know if the host is reachable (supposing it implements ping), and how distant it is in terms of how long it takes to get back to you. Usually the nearest the server is geographically, the less time it will take to return back to you, for simple physical laws that cause a longer distance to introduce more delay in the cables.

54. traceroute

When you try to reach a host on the Internet, you go through your home router, then you reach your ISP network, which in turn goes through its own upstream network router, and so on, until you finally reach the host.

Have you ever wanted to know what are the steps that your packets go through to do that?

The traceroute command is made for this.

You invoke

traceroute <host>

and it will (slowly) gather all the information while the packet travels.

In this example I tried reaching for my blog with traceroute flaviocopes.com:

[image:]

Not every router travelled returns us information. In this case, traceroute prints * * *. Otherwise, we can see the hostname, the IP address, and some performance indicator.

For every router we can see 3 samples, which means traceroute tries by default 3 times to get you a good indication of the time needed to reach it. This is why it takes this long to execute traceroute compared to simply doing a ping to that host.

You can customize this number with the -q option:

traceroute -q 1 flaviocopes.com

[image:]

55. clear

Type clear to clear all the previous commands that were ran in the current terminal.

The screen will clear and you will just see the prompt at the top:

[image:]

Note: this command has a handy shortcut: ctrl-L

Once you do that, you will lose access to scrolling to see the output of the previous commands entered.

So you might want to use clear -x instead, which still clears the screen, but lets you go back to see the previous work by scrolling up.

56. history

Every time we run a command, that's memorized in the history.

You can display all the history using:

history

This shows the history with numbers:

[image:]

You can use the syntax !<command number> to repeat a command stored in the history, in the above example typing !121 will repeat the ls -al | wc -l command.

Typically the last 500 commands are stored in the history.

You can combine this with grep to find a command you ran:

history | grep docker

[image:]

To clear the history, run history -c

57. export

The export command is used to export variables to child processes.

What does this mean?

Suppose you have a variable TEST defined in this way:

TEST="test"

You can print its value using echo $TEST:

[image:]

But if you try defining a Bash script in a file script.sh with the above command:

[image:]

Then you set chmod u+x script.sh and you execute this script with ./script.sh, the echo $TEST line will print nothing!

This is because in Bash the TEST variable was defined local to the shell. When executing a shell script or another command, a subshell is launched to execute it, which does not contain the current shell local variables.

To make the variable available there we need to define TEST not in this way:

TEST="test"

but in this way:

export TEST="test"

Try that, and running ./script.sh now should print "test":

[image:]

Sometimes you need to append something to a variable. It's often done with the PATH variable. You use this syntax:

export PATH=$PATH:/new/path

It's common to use export when you create new variables in this way, but also when you create variables in the .bash_profile or .bashrc configuration files with Bash, or in .zshenv with Zsh.

To remove a variable, use the -n option:

export -n TEST

Calling export without any option will list all the exported variables.

58. crontab

Cron jobs are jobs that are scheduled to run at specific intervals. You might have a command perform something every hour, or every day, or every 2 weeks. Or on weekends. They are very powerful, especially on servers to perform maintenance and automations.

The crontab command is the entry point to work with cron jobs.

The first thing you can do is to explore which cron jobs are defined by you:

crontab -l

You might have none, like me:

[image:]

Run

crontab -e

to edit the cron jobs, and add new ones.

By default this opens with the default editor, which is usually vim. I like nano more, you can use this line to use a different editor:

EDITOR=nano crontab -e

Now you can add one line for each cron job.

The syntax to define cron jobs is kind of scary. This is why I usually use a website to help me generate it without errors: https://crontab-generator.org/

[image:]

You pick a time interval for the cron job, and you type the command to execute.

I chose to run a script located in /Users/flavio/test.sh every 12 hours. This is the crontab line I need to run:

* */12 * * * /Users/flavio/test.sh >/dev/null 2>&1

I run crontab -e:

EDITOR=nano crontab -e

and I add that line, then I press ctrl-X and press y to save.

If all goes well, the cron job is set up:

[image:]

Once this is done, you can see the list of active cron jobs by running:

crontab -l

[image:]

You can remove a cron job running crontab -e again, removing the line and exiting the editor:

[image:]
[image:]

59. uname

Calling uname without any options will return the Operating System codename:

[image:]

The m option shows the hardware name (x86_64 in this example) and the p option prints the processor architecture name (i386 in this example):

[image:]

The s option prints the Operating System name. r prints the release, v prints the version:

[image:]

The n option prints the node network name:

[image:]

The a option prints all the information available:

[image:]

On macOS you can also use the sw_vers command to print more information about the macOS Operating System. Note that this differs from the Darwin (the Kernel) version, which above is 19.6.0.

Darwin is the name of the kernel of macOS. The kernel is the "core" of the Operating System, while the Operating System as a whole is called macOS. In Linux, Linux is the kernel, GNU/Linux would be the Operating System name, although we all refer to it as "Linux"

[image:]

60. env

The env command can be used to pass environment variables without setting them on the outer environment (the current shell).

Suppose you want to run a Node.js app and set the USER variable to it.

You can run

env USER=flavio node app.js

and the USER environment variable will be accessible from the Node.js app via the Node process.env interface.

You can also run the command clearing all the environment variables already set, using the -i option:

env -i node app.js

In this case you will get an error saying env: node: No such file or directory because the node command is not reachable, as the PATH variable used by the shell to look up commands in the common paths is unset.

So you need to pass the full path to the node program:

env -i /usr/local/bin/node app.js

Try with a simple app.js file with this content:

console.log(process.env.NAME)
console.log(process.env.PATH)

You will see the output being

undefined
undefined

You can pass an env variable:

env -i NAME=flavio node app.js

and the output will be

flavio
undefined

Removing the -i option will make PATH available again inside the program:

[image:]

The env command can also be used to print out all the environment variables, if ran with no options:

env

it will return a list of the environment variables set, for example:

HOME=/Users/flavio
LOGNAME=flavio
PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin
PWD=/Users/flavio
SHELL=/usr/local/bin/fish

You can also make a variable inaccessible inside the program you run, using the -u option, for example this code removes the HOME variable from the command environment:

env -u HOME node app.js

61. printenv

A quick guide to the printenv command, used to print the values of environment variables

In any shell there are a good number of environment variables, set either by the system, or by your own shell scripts and configuration.

You can print them all to the terminal using the printenv command. The output will be something like this:

HOME=/Users/flavio
LOGNAME=flavio
PATH=/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin
PWD=/Users/flavio
SHELL=/usr/local/bin/fish

with a few more lines, usually.

You can append a variable name as a parameter, to only show that variable value:

printenv PATH

[image:]

 Conclusion

 Conclusion

 Thanks a lot for reading this book.

For more, head over to flaviocopes.com.

Send any feedback, errata or opinions at flavio@flaviocopes.com

screen shot 2020-09-02 at 11.26.21.png
#i flavio— fish /Users/flavio — -fish — 63x10

[+ ~ 1ls -al newrecipes.txt
-rw-r--r-- 1 flavio staff 8 Sep 2 11:25 newrecipes.txt

screen shot 2020-09-02 at 11.26.07.png
#4 flavio — fish /Users/flavio — -fish — 49x9
[+ ~ ln recipes.txt newrecipes.txt

[+ ~ cat newrecipes.txt

recipes

[+ ~ rm recipes.txt

|+ ~ cat newrecipes.txt

recipes

screenshot 2019-02-09 at 18.50.14.png
#i flaviocopes —fish /Users/flaviocopes — -fish —72x9

screenshot 2019-02-09 at 18.49.52.png
~ 1s -al /bin
total 5120
drwxr-xr-xa 37
30

drwxr-xr-x
~I'WXT-XI'-X
-I-Xr-Xr-x
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
~I'WXT-XI'-X
-I-Xr-Xr-x
~I'WXT-XI'-X

[

RPRRRRRERRRERRERRRERRERRR

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

flaviocopes —fish /Users/flaviocopes —~fish —72x20

wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel
wheel

1184
960
22704
618416
23648
34144
29024
379952
28608
32000
23392
18128
54080
23104
18288
18688
1282864
121296

Feb
Feb
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

4

8
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

10:

15
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

05 .
132
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121
121

screen shot 2020-07-04 at 18.42.40.png
[Applications — man /Usersflavio/Applications — less « man Is — 82x28

screen shot 2020-09-07 at 07.35.41.png
0o i flavio — fish /Users/flavio — -fish — 80x29

~ tldr 1s
1s
List directory contents.

- List files one per line:
1s -1

- List all files, including hidden files:
1s -a

- Long format list (permissions, ownership, size and modification date) of all
files:
1s -la

- Long format list with size displayed using human readable units (KB, MB, GB)

1s -lh

- Long format list sorted by size (descending):
1s -1S

- Long format list of all files, sorted by modification date (oldest first):
1s -ltr

screen shot 2020-09-04 at 09.04.19.png
flavio — bash /Users/flavio — bash — 45x5

screen shot 2020-09-04 at 08.11.30.png
LX) — bat
bash-3.2$ du

screen shot 2020-09-04 at 09.08.18.png
LX) flavio — bash
bash-3.2$ umask
0022
bash-3.2$ umask -S

u=rwx, g=rx,o=rx
bash-3.2$ ||

screen shot 2020-09-02 at 11.27.18.png
#i flavio— fish /Users/flavio — -fish — 78x6

[+ ~ 1ls -al newrecipes.txt
lrwxr-xr-x 1 flavio staff 11 Sep 2 11:26 newrecipes.txt@® -> recipes.txt

screen shot 2020-09-04 at 08.14.40.png
flavio — bash /Users/flavio — bash — 58x10

[bash-3.2$ du -h vuehandbook
vuehandbook/12-vue-watchers
vuehandbook/@7-vue-single-file-components
vuehandbook/19-vue-components-communication
vuehandbook/20-vuex

vuehandbook/21-bonus-vue-router
vuehandbook/@1-vue-introduction
vuehandbook/@2-vue-first-app
vuehandbook/@6-vue-components
vuehandbook/@4-vue-devtools

screen shot 2020-09-02 at 11.27.03.png
flavio — fish /Users/flavio — -fish — 63x10
I+ ~ ln -s recipes.txt newrecipes.txt

[+ ~ cat newrecipes.txt

recipes

[+ ~ rm recipes.txt

|+ ~ cat newrecipes.txt

cat: newrecipes.txt: No such file or directory

screen shot 2020-09-04 at 08.12.35.png
flavio— bash /

2% du *
Card.vue
CardList.vue

Form.vue
HelloWorld.vue
bash-3.2$ ||

cover.jpg
CLI
HANDBOOK

FLAVIO COPES

screen shot 2020-09-03 at 15.49.53.png
flavio — bash /Users/flavio — bash — 61x7

Ibash-3.2$ echo "$(1s -al)"

total 8

drwxr-xr-x 4 flavio
drwxr-xr-x+ 55 flavio
-rw-r--r-- 1 flavio
-rw-r--r-- 1 flavio
bash-3.2$

staff
staff
staff
staff

128 Sep
1760 Sep
6 Sep
@ Sep

:43 output.txt
:20 words.txt

SR5]
SR5]
SRS
SR5]

screen shot 2020-09-03 at 15.48.55.png
flavio — bash /Users|flavio — bash — 61x6

bash-3.2$ echo $(ls -al)

total 8 drwxr-xr-x 4 flavio staff 128 Sep 3 15:43
x+ 55 flavio staff 1760 Sep 3 15:20

]
. drwxr-xr-
. -rw-r--r-- 1 flavio st

aff 6 Sep 3 15:43 output.txt -rw-r--r-- 1 flavio staff @ Sep
3 15:20 words.txt

bash-3.2$

screen shot 2020-09-03 at 18.40.49.png
#i flavio — fish /Users/flavio —-fish — 65x7
[+ ~ sudo touch test.txt

|+ ~ echo test >>

<W> fish: An error occurred while redirecting file 'test.txt'
open: Permission denied

screen shot 2020-09-03 at 15.47.19.png
flavio — bash /Users/flavio — bash — 61x5
bash-3.2$ echo {1..5}

12345

bash-3.2$

screen shot 2020-09-03 at 18.49.22.png
[+ billtracker

total 1576
drwxr-xr-x@
drwxr-xr-x@
-rw-r--r--@
drwxr-xr-x@
-rw-r--r--@
-rw-r--r--@
-rw-r--r--@
-rw-r--r--@
-rw-r--r--@
drwxr-xr-x@
drwxr-xr-x@
-rw-r--r--@
-rw-r--r--@

s
14

i
14

i
13
i
i
i
5]
6
1
1

billtracker

M billtracker — fish /Users/flavio/dev/vue/biltracker — -fish — 72x16

git:(C

flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
git:C

) x 1s -al

staff 416
staff 448
staff 6148
staff 448
staff 214
staff 52
staff 485000
staff 1083
staff 101
staff 160
staff 192
staff 27350
staff 265963
D)

2020

dzgilil

2018
18:49
2018
2018
2018
2018
2018
2018
2018
2018
2018

o/

o/

.DS_Store

.git/

.gitignore
babel.config.js
package-lock. json
package. json
postcss.config.js
public/

src/

tailwind.js
yarn.lock

screen shot 2020-09-03 at 18.40.58.png
#i flavio — fish /Users/flavio —-fish — 65x7

[+ ~ sudo touch test.txt

|+ ~ echo test >>

<W> fish: An error occurred while redirecting file 'test.txt'
open: Permission denied

[+ ~ sudo chown flavio test.txt
[+ ~ echo test >> test.txt

screen shot 2020-09-10 at 08.28.11.png
e #t flavio — fish /Us i
basename /Users/flavio/
flavio

basename /Users/flavio
flavio

screen shot 2020-09-10 at 08.27.52.png
+ ~ basename /Users/flavio/test.txt
test.txt

screen shot 2020-09-02 at 12.25.08.png
[

~ ps

PID
59474
941
71366
4216
68714
5088

TTY

ttys000
ttys002
ttys004
ttys009

ttys009
ttys013

flavio — fish /Users/flavio — -fish — 6312

TIME

:00.13
:00.61
:01.08
:00.31
:20.82
:02.89

CMD
/usr/local/bin/fish -1
/usr/local/bin/fish -1
-fish
/usr/local/bin/fish -1
hugo serve

-fish

screen shot 2020-09-10 at 08.31.08.png
dirname /Users/flavio/test.txt
/Users/flavio

screen shot 2020-09-02 at 12.30.22.png
i flavio — fish Users/flavio —-fish — 84x21
[+ ~ ps axww

PID TT STAT TIME COMMAND

1 7?2 Ss 43:25.81 /sbin/launchd

92 7?7 Ss 2:03.82 /usr/sbin/syslogd

93 ?? Ss .05 /usr/libexec/UserEventAgent (System)

9% ?? Ss 0:18.74 /System/Library/PrivateFrameworks/Uninstall.framework/Res
ources/uninstalld

97 77 Ss 1:36.94 /usr/libexec/kextd

98 ?? Ss 12:31.92 /System/Library/Frameworks/CoreServices.framework/Version
s/A/Frameworks/FSEvents . framework/Versions/A/Support/fseventsd

99 ?? Ss 0:21.48 /System/Library/PrivateFrameworks/MediaRemote.framework/S
upport/mediaremoted

102 ?? Ss 22:56.23 /usr/sbin/systemstats --daemon

103 ?? Ss .80 /usr/libexec/configd

105 ?? Ss :32.38 /System/Library/CoreServices/powerd.bundle/powerd

109 ?? Ss :48.48 /usr/libexec/logd

110 ?? Ss :01.46 /usr/libexec/keybagd -t 15

113 ?? Ss .42 /usr/libexec/watchdogd

iy 7 583 44:38.88 /System/Library/Frameworks/CoreServices.framework/Framewo
rks/Metadata. framework/Support/mds

118 ?? Ss 0:00.55 /System/Library/CoreServices/iconservicesd

screen shot 2020-09-02 at 12.26.00.png
STAT
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Rs
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Ss
Ss

flavio — fish /Users/flavio — -fish — 86x24

COMMAND

/sbin/launchd

/usr/sbin/syslogd

/usr/libexec/UserEventAgent (System)
/System/Library/PrivateFrameworks/Uninstall.framework/Reso
/usr/libexec/kextd
/System/Library/Frameworks/CoreServices.framework/Versions
/System/Library/PrivateFrameworks/MediaRemote. framework/Su
/usr/sbin/systemstats --daemon

/usr/libexec/configd
/System/Library/CoreServices/powerd.bundle/powerd
/usr/libexec/logd

/usr/libexec/keybagd -t 15

/usr/libexec/watchdogd
/System/Library/Frameworks/CoreServices . framework/Framewor
/System/Library/CoreServices/iconservicesd
/usr/libexec/diskarbitrationd

/usr/libexec/coreduetd

/usr/libexec/opendirectoryd
/System/Library/PrivateFrameworks/ApplePushService.framewo
/Library/PrivilegedHelperTools/com.docker.vmnetd
/System/Library/CoreServices/launchservicesd
/usr/libexec/timed

screen shot 2020-09-04 at 08.22.25.png
flavio — bash /Users/flavio — bash — 63x13

[bash-3.2$ du -h vuehandbook | sort -nr | head
vuehandbook/@5-vue-vscode
vuehandbook/ .git/objects/75
vuehandbook/@3-vue-cli
vuehandbook/04-vue-devtools
vuehandbook/@2-vue-first-app
vuehandbook/ .git/objects/pack

vuehandbook/ .git/objects/b@

vuehandbook/20-vuex

vuehandbook/ .git/objects/6f

vuehandbook/ .git/objects/41
bash-3.2$

screen shot 2020-09-04 at 08.20.12.png
flavio — bash /Users/flavio — bash — 65x14

[bash-3.2$ du -ah vuehandbook
vuehandbook/12-vue-watchers/index.md
vuehandbook/12-vue-watchers
vuehandbook/@7-vue-single-file-components/index.md
vuehandbook/@7-vue-single-file-components
vuehandbook/19-vue-components-communication/index.md
vuehandbook/19-vue-components-communication

vuehandbook/20-vuex/vuex-store.png
vuehandbook/20-vuex/index.md
vuehandbook/20-vuex/codesandbox. png
vuehandbook/20-vuex

vuehandbook/ .DS_Store
vuehandbook/21-bonus-vue-router/banner. jpg
vuehandbook/21-bonus-vue-router/index.md

screen shot 2020-09-08 at 08.40.50.png
4 flavio — fish /Users/flavio — -fish — 100x9

[+ ~df -h

Filesystem Size Avail Capacity iused ifree %iused Mounted on
/dev/disklsl 466Gi 23361 5% 488418 4881964462 % /

devfs 188Ki @Bi 100% (2] @ 100% /dev

/dev/diskls2 466Gi 23361 49% 4287984 4878164896 @% /System/Volumes/Data

/dev/diskls5 466Gi 2336Gi 3% 5 4882452875 0% /private/var/vm
map auto_home 0Bi OBi 100% [} @ 100% /System/Volumes/Data/home

screen shot 2020-09-08 at 08.40.39.png
#i flavio— fish /Users/flavio — -fish — 106x9

~ df

Filesystem 512-blocks Used Available Capacity iused ifree %iused

/dev/disklsl 976490576 21974760 487735816
devfs 375 375 o
/dev/diskls2 976490576 454785000 487735816

/dev/diskls5 976490576 10485848 487735816
map auto_home]] [}

5% 488418 4881964462 0%
100% 649 o 100%
49% 4287975 4878164905 %
3% 5 4882452875 %
100%] o 100%

Mounted on

/

/dev

/System/Volumes/Data
/private/var/vm
/System/Volumes/Data/home

screen shot 2020-09-08 at 08.41.27.png
#i flavio— fish /Users/flavio — -fish — 109x6

[+ ~ df dev
Filesystem 512-blocks Used Available Capacity iused ifree %iused Mounted on
/dev/diskls2 976490576 454788176 487732640 49% 4287987 4878164893 @% /System/Volumes/Data

screen shot 2020-09-03 at 16.12.46.png
bash-3.2$ jobs
[1]+ Stopped
[2]- Stopped

bash-3.2$

flavio — bash /Users/flavio — bash — 61x5

top (wd: ~)
top -0 mem (wd: ~)

screen shot 2020-09-03 at 16.32.50.png
flavio — bash /Users/flavio — bash — 61x19
|bash-3.2$ type 1s

1s is hashed (/bin/1s)
|bash-3.2$ type cat

cat is /bin/cat

|bash-3.2$ type pwd

pwd is a shell builtin
[bash-3.2$ type 11

11 is aliased to “ls -al'
|bash-3.2$ type top

top is hashed (/usr/bin/top)
[bash-3.2$ type jobs

jobs is a shell builtin
|bash-3.2$ type bg

bg is a shell builtin
bash-3.2$ type kill

kill is a shell builtin
|bash-3.2$ type top

top is hashed (/usr/bin/top)
bash-3.2$

screen shot 2020-09-03 at 16.12.54.png
flavio — bash /Users/flavio — top — 61x23

Processes: 574 total, 2 running, 572 sleeping, 3823 threads
16:12:54 Load Avg: 1.44, 1.60, 1.74

CPU usage: 3.76% user, 2.99% sys, 93.23% idle

SharedLibs: 235M resident, 62M data, 16M linkedit.
MemRegions: 365072 total, 6752M resident, 166M private, 1835M
PhysMem: 15G used (3692M wired), 738M unused.

VM: 3092G vsize, 1991M framework vsize, 318057086(@) swapins,
Networks: packets: 43489522/66G in, 47248873/25G out.

Disks: 69434725/1968G read, 44158267/1695G written.

PID COMMAND %CPU TIME #TH #WQ #PORT m

1185 com.docker.h 9.1 15:40: 42 2374M
566 Code Helper 267 1606M
85440 hugo 29 1029M
229 WindowServer 6193+ 851M
1152 1Password 7 2400 581M
377 Bear 1763 570M+
605 Code Helper 226 557M
42433 Photos 535 524M
588 Figma Helper @. 219 522M
o kernel_task 3. 262/12 o 514M
38992 Google Chrom @. :52:53 35 1238 506M
594 Code Helper 0. :59.85 27 228 471M

PNORRRONAORS

screen shot 2020-09-03 at 16.33.06.png
OO0 # flavio — fish /Users/flavio — -fish — 80x39
> ~ type ls
1s is a function with definition
Defined in /usr/local/Cellar/fish/3.1.0/share/fish/functions/ls.fish @ line 13
function 1ls --description 'List contents of directory'
set -1 opt -G
isatty stdout
and set -a opt -F
command 1s $opt $argv
end
[+ ~ type cat
cat is /bin/cat
> ~ type pwd
pwd is a builtin
-+ ~ type 11
11 is a function with definition
Defined in /usr/local/Cellar/fish/3.1.0/share/fish/functions/11.fish @ line 4
function 11 --description 'List contents of directory using long format'
1s -1h $argv
end
> ~ type top
top is /usr/bin/top
[+ ~ type jobs
jobs is a builtin
» ~ type bg
bg is a function with definition
Defined in /usr/local/Cellar/fish/3.1.0/share/fish/config.fish @ line 274
function bg
set -1 jobbltn bg
builtin $jobbltn (__fish_expand_pid_args $argv)
end
[+ ~ type kill
kill is a function with definition
Defined in /usr/local/Cellar/fish/3.1.0/share/fish/config.fish @ line 279
function kill
command kill (__fish_expand_pid_args $argv)
end
> ~ type top
top is /usr/bin/top

screen shot 2020-09-03 at 16.32.57.png
flavio — zsh /Usersfflavio — zsh — 77x23
(flavio@mbp ~ % type 1s
1s is /bin/ls

[flavio@mbp ~ % type cat
cat is /bin/cat
[flavio@mbp ~ % type pwd
pwd is a shell builtin
[flavio@mbp ~ % type 11

11 not found

[flavio@mbp ~ % alias 1l='ls -al'
(flavio@mbp ~ % type 11

11 is an alias for 1s -al
[flavio@mbp ~ % type top
top is /usr/bin/top
[flavio@mbp ~ % type jobs
jobs is a shell builtin
(flavio@mbp ~ % type bg
bg is a shell builtin
(flavio@mbp ~ % type kill
kill is a shell builtin
[flavio@mbp ~ % type top
top is /usr/bin/top
flavio@mbp ~ %

screen shot 2020-09-08 at 07.45.28.png
testing — fish /Users/flavio/testing — -fish — 62x7

1s
file2 file3 todelete.txt
cat todelete.txt

screen shot 2020-09-03 at 17.22.47.png
#4 flavio — fish Users/flavio —-fish — 40x6
[+ ~ which 1s
/bin/ls

~ which docker

/usr/local/bin/docker

screen shot 2020-09-03 at 11.39.53.png
flavio— top [Usersflavio — top — 80x24
Processes: 574 total, 2 running, 572 sleeping, 3807 threads 11:39:53
Load Avg: 1.24, 1.93, 2.23 (PU usage: 4.61% user, 3.68% sys, 91.69% idle
SharedLibs: 234M resident, 62M data, 16M linkedit.

MemRegions: 369828 total, 6215M resident, 163M private, 16@03M shared.

PhysMem: 14G used (3684M wired), 1742M unused.

VM: 3080G vsize, 1991M framework vsize, 316459873(128) swapins, 322451178(0) swa
Networks: packets: 41309179/63G in, 44958830/24G out.

Disks: 68270763/1950G read, 43422129/1680G written.

PID COMMAND TIME #TH #WQ #PORT MEM PURG CMPRS
229 WindowServer 16.1 13:11: 10 6607+ 845M+ 1216K- 173M
1185 com.docker.h 7.6 15:21:25 18 42 2374M @B 316M
82661 top 1/1 27+ 8352K+ @B oB
381 Terminal ail 436 105M 14M 28M-
1152 1Password 7 8 2473- 530M- 244K 349M
o kernel_task 262/12 o 510M+ @B oB
82622 Google Chrom 16 209 81M 2B
377 Bear 12 1760- 557M- 460M-
98108 Books 3 822 302M 286M
347 cloudd 16 785+ 31M+ 12M-
149 hidd 7 560 7208K 2496K
50060 Music 22 684 201M+ 7™
148 bluetoothd & 801 18M 7520K
1154 Rectangle 3 210- 52M- 45M

Whnhnosrhroxoasr»a
PRWUNURURSONASS A

screen shot 2020-09-09 at 16.32.01.png
4 flavio — fish /Users/flavio — -fish — 91x20
[+ ~ traceroute flaviocopes.com

traceroute: Warning: flaviocopes.com has multiple addresses; using 142.93.108.123
traceroute to flaviocopes.com (142.93.108.123), 64 hops max, 52 byte packets
192.168.1.1 (192.168.1.1) 3.090 ms 2.391 ms 2.231 ms
pppoe-server.net.ngi.it (81.174.0.21) 10.697 ms 20.802 ms 21.329 ms

* % %

10.40.83.89 (10.40.83.89) 374.040 ms 1258.538 ms *

10.40.4.177 (10.40.4.177) 21.893 ms 20.705 ms 20.912 ms

* % %

ffm-bb2-link.telia.net (62.115.116.172) 28.671 ms 39.589 ms *
* % %
digitalocean-ic-328177-ffm-b4.c.telia.net (80.239.128.21) 172.565 ms 173.744 ms

digitalocean-ic-328178-ffm-b4.c.telia.net (80.239.128.23) 316.124 ms
* % %

1
2
]
4
5
6
7
8
9

* x %
* x %

142.93.108.123 (142.93.108.123) 207.791 ms !Z 32.786 ms !Z 23.561 ms !Z

screen shot 2020-09-02 at 12.33.45.png
[

i flavio — fish Users/flavio —-fish — 84x21
~ ps axww | grep]
367 ??7 S 40:32.47 /Applications/' .app/Contents/Mac0S/Elect
ron -psn_0_77843

566 ?? S 93:02.21 /Applications/’ .app/Contents/Frameworks/
Code Helper (GPU).app/Contents/Mac0S/Code Helper (GPU) --type=gpu-process --field-tr
ial-handle=1718379636,8422946071360466993,8181735644596197527,131072 --disable-featu
res=LayoutNG,PictureInPicture,SpareRendererForSitePerProcess --disable-color-correct
-rendering --gpu-preferences=KAAAAAAAAAAGAAAAAAAAAAAAYAAAAAAAEAAAAAAAAAAAAAAAAAAAAAG
BAAAGAAAAAAEAAAAAAAATAQAAAAAAABABAAAAAAAAGAEAAAAAAAAGAQAAAAAAACGBAAAAAAAAMAEAAAAAAAA
4AQAAAAAAAEABAAAAAAAASAEAAAAAAABQAQAAAAAAAF gBAAAAAAAAYAEAAAAAAABOAQAAAAAAAHABAAAAAAA
AeAEAAAAAAACAAQAAAAAAATGBAAAAAAAAKAEAAAAAAACYAQAAAAAAAKABAAAAAAAAGAEAAAAAAACWAQAAAAA
AALgBAAAAAAAAWAEAAAAAAADIAQAAAAAAANABAAAAAAAA2AEAAAAAAADGAQAAAAAAAOGBAAAAAAAABAEAAAA
AAAD4AQAAAAAAABAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAACAAAAEAAAAAAAAAAAAAAABGAAABAAAAA
AAAAAAAAAAACAAAAQAAAAAAAAAAAAAAATAAAAEAAAAAAAAAAAAAAACGAAABAAAAAAAAAAAAAAAASAAAAQAAA
AAAAAAAAAAAANAAAAEAAAAAAAAAABAAAAAAAAABAAAAAAAAAAAQAAAATAAAAQAAAAAAAAAAEAAAAGAAAAEAA
AAAAAAAABAAAABWAAABAAAAAAAAAAAQAAAAGAAAAQAAAAAAAAAAEAAAAKAAAAEAAAAAAAAAABAAAACWAAABA
AAAAAAAAAAQAAAAQAAAAQAAAAAAAAAAQAAAAAAAAAEAAAAAAAAAAEAAAAAGAAABAAAAAAAAAABAAAAAYAAAA
QAAAAAAAAAAQAAAAHAAAAEAAAAAAAAAAEAAAACAAAABAAAAAAAAAABAAAAAOAAAAQAAAAAAAAAAQAAAALAAA
AEAAAAAAAAAAEAAAADQAAABAAAAAAAAAABGAAAAAAAAAQAAAAAAAAAAYAAAACAAAAEAAAAAAAAAAGAAAABGA
AABAAAAAAAAAABGAAAACAAAAQAAAAAAAAAAYAAAATAAAAEAAAAAAAAAAGAAAACGAAABAAAAAAAAAABGAAAAS
AAAAQAAAAAAAAAAYAAAANAAAA --service-request-channel-token=4754214311225613582

screen shot 2020-09-09 at 15.21.27.png
#4 flavio — fish Users/flavio — -fish — 72x11
[+ ~ ping flaviocopes.com

PING flaviocopes.com (167.99.137.12): 56 data bytes
Request timeout for icmp_seq @

Request timeout for icmp_seq 1

Request timeout for icmp_seq 2

Request timeout for icmp_seq 3

AC
--- flaviocopes.com ping statistics ---
5 packets transmitted, @ packets received, 100.0% packet loss

screen shot 2020-09-03 at 16.06.18.png
bash-3.2$ jobs
[1]+ Stopped
[2]- Stopped

bash-3.2$

flavio — bash /Users/flavio — bash — 61x5

top (wd: ~)
top -0 mem (wd: ~)

screen shot 2020-09-09 at 15.21.46.png
#i flavio— fish /Users/flavio — -fish — 72x13

[+ ~ ping google.com

PING google.com (216.58.205.78): 56 data bytes

64 bytes from 216.58.205.78: icmp_seq=0 tt1=118 time=32.823
64 bytes from 216.58.205.78: icmp_seq=1 tt1=118 time=39.248
64 bytes from 216.58.205.78: icmp_seq=2 ttl1=118 time=19.987
64 bytes from 216.58.205.78: icmp_seq=3 tt1=118 time=29.539
64 bytes from 216.58.205.78: icmp_seq=4 ttl1=118 time=18.011

AC
--- google.com ping statistics ---

S packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 18.011/27.922/39.248/7.951 ms

screen shot 2020-09-03 at 11.49.42.png
bash-3.2$ jobs
Stopped
[2]+ Stopped

bash-3.2$

flavio — bash /Users/flavio — bash — 57x6

top
top -o mem

screen shot 2020-09-04 at 08.04.50.png
flavio — bash /Users/flavio — bash — 71x8
.2$ history | grep docker

git clone https://github.com/docker/getting-started.git
git clone https://github.com/docker/getting-started.git
docker container stop $(docker container 1s)

docker container stop $(docker container 1s)
docker container stop $(docker container ls -aq)
history | grep docker

.28

screen shot 2020-09-04 at 08.03.10.png
flavio — bash /Users/flavio — bash — 71x16
[LE]

passwd -S

tldr wc

cat test >> test.txt

echo test >> test.txt

wec test.txt

wc -1 test.txt

1s -al | wc

1s -al | wc -1
tldr open

open .
open -R test.txt
tldr history
history

history

.28

screen shot 2020-09-03 at 18.10.32.png
#i flavio— fish /Users/flavio — -fish — 56x10

screen shot 2020-09-09 at 16.36.07.png
4 flavio — fish /Users/flavio — -fish — 86x17
[+ ~ traceroute -q 1 flaviocopes.com
traceroute: Warning: flaviocopes.com has multiple addresses; using 167.99.137.12
traceroute to flaviocopes.com (167.99.137.12), 64 hops max, 52 byte packets
192.168.1.1 (192.168.1.1) 6.441 ms
pppoe-server.net.ngi.it (81.174.0.21) 17.438 ms
*

10.40.83.89 (10.40.83.89) 30.463 ms

10.40.4.177 (10.40.4.177) 22.037 ms
mno-b2-1link.telia.net (62.115.57.249) 20.573 ms
ffm-bb2-link.telia.net (62.115.116.172) 27.682 ms
*

digitalocean-ic-328178-ffm-b4.c.telia.net (80.239.128.23) 137.439 ms
*

1
2
]
4
5
6
7
8
9
]

*
*
167.99.137.12 (167.99.137.12) 35.460 ms !Z

screen shot 2020-09-09 at 17.37.56.png
flavio — bash /Users/flavio — bash — 61x6
bash-3.2$ export TEST="test"

|bash-3.2$./script.sh

test

bash-3.2$

screen shot 2020-09-09 at 17.35.23.png
GNU nano

#!/bin/bash
echo $TEST]

&8 Get Heldl WriteOugd Read Fild Prev Pagll Cut Te Cur Pos
& Exit [N Justifyg] Where IV Next Pagll UnCut To Spell

screen shot 2020-09-09 at 17.32.49.png
flavio — bash /Users/flavio

[bash-3.2$ echo $TEST
test
bash-3.2$

screenshot 2019-02-10 at 11.44.36.png
[test—vi [Users/flaviocopes/test — vi — 88x23

VIM - Vi IMproved

version 8.0.1283
by Bram Moolenaar et al.
is open source and freely distributable

Help poor children in Uganda!
:help iccf<Enter> for information

:q<Enter> to exit
:help<Enter> or <F1> for on-line help
:help version8<Enter> for version info

screen shot 2020-09-08 at 08.35.37.png
testing — cat /Users/flavio/testing — xargs -
testing cat todelete.txt | xargs -p -I % sh -c
sh -c 1s filel; rm filel?...

screenshot 2019-02-10 at 11.47.39.png
I test—vi /Users/flaviocopes/test — vi test.txt — 88x23

screenshot 2019-02-10 at 11.36.21.png
[0 test—vi /Users/flaviocopes/test — vi test.txt — 76x21

"test.txt" [New File]

screenshot 2019-02-10 at 11.48.44.png
ocee I test—vi /Users/flaviocopes/test — vi test.txt — 88x23

Hey

This is a very cool editor

It's called Vimj

screenshot 2019-02-10 at 11.48.39.png
ocee [0 test—vi /Users/flaviocopes/test — vi test.txt — 88x23

Hey

This is a very cool editor

It's called vim![]

screenshot 2019-02-10 at 13.12.49.png
emacs [Users/flaviocopestest
File Edit Options Buffers Tools Text Help
ey

This is a very cool editor

It's called Emacs!

For information about GNU Emacs and the GNU system, type C-h C-a.

screenshot 2019-02-10 at 12.14.18.png
test—emacs_/Users/flaviocopes/test — emacs — 88x27
File Edit Options Buffers Tools Help
lelcome to GNU Emacs, a part of the GNU operating system

Get help C-h (Hold down CTRL and press h)

Emacs manual C-h r Browse manuals C-h

Emacs tutorial C-h t Undo changes C-x
C-h R C-x
M

Buy manuals ET Exit Emacs G
Activate menubar
(‘C-' means use the CTRL key. ‘M-’ means use the Meta (or Alt) key.
If you have no Meta key, you may instead type ESC followed by the character.)
Useful tasks:

Open Home Directory

Open *scratchx buffer

GNU Emacs 26.1 (build 1, x86_64-apple-darwini8.2.0)
of 2019-01-16
Copyright (C) 2018 Free Software Foundation, Inc.

GNU Emacs comes with ABSOLUTELY NO WARRANTY; type C-h C-w for full details.
Emacs is Free Software--Free as in Freedom--so you can redistribute copies
of Emacs and modify it; type C-h C-c to see the conditions.
Type C-h C-o for information on getting the latest version.

ALl L1 (Fundamental)
For information about GNU Emacs and the GNU system, type C-h C-a.

screen shot 2020-09-08 at 08.19.09.png
® ® M testing— Vioftesting — xargs -p rm — 44x5
+ testing cat todelete txt | xargs -p rm
rm filel file3?.

screen shot 2020-09-08 at 07.46.39.png
testing — fish /Users/flavio/testing — -fish — 62x10

1s
file2 file3 todelete.txt
cat todelete.txt

cat todelete.txt | xargs rm

1s
todelete.txt

screen shot 2020-09-08 at 08.32.58.png
ers/flavioftesting — xargs -p -n1 rm — 56x5
testing cat todelete.txt | xargs -p -nl rm
rm filel?...

screenshot 2019-02-10 at 13.14.35.png
emacs _[Users/flaviocopestest
File Edit Options Buffers Tools Text Help
Hey

This is a very cool editor

It's called Emacs!

Wrote /Users/flaviocopes/test/test.txt

screen shot 2020-09-03 at 18.08.05.png
® 0 #fla
~ whoami

screenshot 2019-02-10 at 11.03.51.png
ano_[Users/flaviocopes/test — nano test2 — 82x23

New Buffer Modified &

B Get Help [Writeout @ Read File @ Prev Page @Il Cut Text @8 Cur Pos
R Exit @8 Justify || Where Is @Y Next Page JI UnCut Textj] To Spell

screen shot 2020-09-03 at 18.05.29.png
[

~ who -aH

USER

reboot
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio
flavio

LINE

console
ttys000
ttys004
ttys006
ttys007
ttys008
ttys009
ttys010
ttys011
ttys013

flavio — fish /Users/flavio — -fish — 66x15

WHEN
Aug
Aug
Aug
Sep
Sep
Sep
Aug
Aug
Aug
Aug
Aug

run-level 3

s
13
16

IDLE
00:01
old
]

00:41

00:01

04:15
old

01:33

PID

i

167
70258
71365
71675
82656
25883
52214
38649
18855
5086

COMMENT

term=0 exit=0

exit=0
exit=0

screen shot 2020-09-03 at 18.03.05.png
flavio — fish /Users/flavio — -fish — 53x7

console Aug 13 12:52
ttys004 Sep 2 12:22
ttys006 Sep 2 12:26

ttys007 Sep 3 11:39
ttys013 Aug 28 16:49

screen shot 2020-09-03 at 18.07.30.png
flavio — fish /Users/flavio — -fish — 65x5

I+ ~ who -aH am 1
USER LINE WHEN IDLE PID COMMENT
flavio ttys@@4 Sep 2 12:22 . 71365

screen shot 2020-09-07 at 07.38.06.png
4 flavio — fish /Users/flavio — -fish — 44x8
[+ ~ uname -a I
Darwin mbp.local 19.6.0 Darwin Kernel Versio
n 19.6.0: Thu Jun 18 20:49:00 PDT 2020; root
:xnu-6153.141.1~1/RELEASE_X86_64 x86_64

screen shot 2020-09-03 at 18.06.35.png
oo # flavio — ers/flavio — -fish — 45x5
who am i
flavio ttys@@4 Sep 2 12:22

screen shot 2020-09-03 at 18.25.50.png
flavio — sudo /Users/flavio — bash — 42x6
[+ ~ sudo -i

[Password

mbp:~ root#

screen shot 2020-09-09 at 15.55.42.png
i fish Users/flavio — -fish — 68x5

I+ ~ gzip -kv wget-log
wget-log: 49.7% -- replaced with wget-log.gz

screen shot 2020-09-03 at 18.18.09.png
flavio — su /Users/flavio — su — 40x6

[+ ~su
Password

screenshot 2019-02-10 at 13.14.32.png
test —emacs_/Users/flaviocopes/test
File Edit Options Buffers Tools Text Help
Hey

This is a very cool editor

It's called Emacs!

screen shot 2020-09-10 at 16.31.20.png
LX) # flavio — fish /Users/t
-+ ~ printenv PATH
/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/

Library/Apple/usr/bin

screenshot 2019-02-10 at 13.14.29.png
emacs _[Users/flaviocopestest
File Edit Options Buffers Tools Minibuf Help
Hey

This is a very cool editor

It's called Emacs!

screen shot 2020-09-10 at 16.55.17.png
#i flavio — fish Users/flavio —-fish — 73x5
~ env NAME=flavio node app.ijs

flavio

/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:/Library/Apple/usr/bin

screen shot 2020-09-07 at 07.38.15.png
#i flavio— fish /Users/flavio — -fish — 44x8

[+ ~ sw_vers

ProductName : Mac 0S X
ProductVersion: 10.15.6
BuildVersion: 19G2021

screen shot 2020-09-04 at 09.47.04.png
flavio — bash /Users/flavio — bash — 66x12

bash-3.2$ 1s -al

total 120

drwxr-xr-x 4 flavio
drwxr-xr-x 138 flavio
[-rw-r--r-- 1 flavio
-rW-r--r-- 1 flavio

bash-3.2$ 1s -al | grep
total 120
drwxr-xr-x 4 flavio
drwxr-xr-x 138 flavio
-rw-r--r-- 1 flavio
bash-3.2$

staff 128
staff 4416
staff 49556
staff 5659
-v index.md

staff 128
staff 4416
staff 49556

Apr 3 08:15 .

Aug 22 14:58 ..

Apr 3 09:37 banner.png
Feb 11 2020 index.md

Apr 3 08:15 .
Aug 22 14:58 ..
Apr 3 09:37 banner.png

screen shot 2020-09-04 at 09.43.15.png
flavio — bash /Users/flavio — bash — 77x7
|bash-3.2$ less index.md | grep -n document.getElementById

60:document . getElementById('button').addEventListener('click', O => {
128: document.getElementById('button').addEventListener('click', O = {
bash-3.2$

screen shot 2020-09-03 at 15.21.00.png
flavio — bash /Users/flavio — bash — 52x7

[bash-3.2$ 1s
words . txt
bash-3.2$

screen shot 2020-09-09 at 18.07.00.png
flavio — bash /Users/flavio — bash — 61x8
bash-3.2$ crontab -1
* */12 * * * /Users/flavio/test.sh >/dev/null 2>&1

bash-3.2$

screen shot 2020-09-04 at 07.32.05.png
-+ ~ passwd
Changing password for flavio.

Old Password:[J

screen shot 2020-09-09 at 16.56.33.png
'E fish Users/flavio — -fish — 65x5
[+ ~ tar -tf grchive.tar

filel

file2

screen shot 2020-09-09 at 18.06.19.png
ash /Users/flavio — bash — 62x5
.2$ EDITOR=nano crontab -e
no crontab for flavio - using an empty one
installing new crontab

.28
.2%

screen shot 2020-09-03 at 15.22.51.png
flavio — bash /Users/flavio — bash — 61x8
bash-3.2$ alias 11='ls -al'

[bash-3.2$

[bash-3.2$ 11

total @

drwxr-xr-x 3 flavio staff

96 Sep 3 15:20 .
drwxr-xr-x+ 55 flavio staff 1760 Sep 3 15:20
-rw-r--r-- 1 flavio staff @ Sep 3 15:20 words txt
bash-3.2$

screen shot 2020-09-09 at 18.03.57.png
© Crontab Generator - Generate X+

C @ crontab-generator.org

Crontab Generator

@ Get frustrated with Cron on your server? Try our Webcron Service.

If you wantto periodicaly perform a task (e.g. sending Emalls, backing up database, doing regular maintenance, etc.) at specified times and dates, there are
tWo ways 10 set scheduled tasks:

Method 1: Use our online cron ob service that will save you a headache.
Method 2: Use Cron avallable in Unix/Linux systems

If you go with method 2, the following generator can help you produce a crontab syniax that you can copy & paste to your crontab file (You can open the file
by using command crontab ~e). Below the generated crontab syntax, a st of run times will be displayed t0o. The predictions will help you ensure that you
set the time and date right.

Complete the following form to generate a crontab line

Ctr-click (or command-click on the Mac) to select multiple entries

Minutes Hours Days
® Every Minute o ® Every Hour Mignignt @® Every Day ol
Even Minutes 1 Even Hours 1am Even Days 2
5 Odd Minutes 2) Odd Hours 2am 5 0dd Days 3
3 3an 4
Every 5 Minutes : Every 6 Hours - Every 5 Days M
O Every 15 Minutes 5 O Every 12 Hours sam O Every 10 Days. s
Every 30 Minutes 6 6am Every Half Month 7
7 7am 8
8 8am 9
9 9am 10
Months Weekday
® Every Montn [van ® Every Weekday 5[s
O Even Months Feb O Monday-Friday Mon
0dd Months Mar Weekend Days Tue
Aor Wed
5 Every 4 Months Ty o
Every Half Year Jun Fn
il sat
Aug
Sep
oct

Command To Execute

Command Examples:

Execute PHP script:

screen shot 2020-09-03 at 15.21.08.png
[Users/flavio — bash — 61x10

[bash-3.2$ 1s
words . txt
[bash-3.2$ 1s -al
total @

drwxr-xr-x 3 flavio staff 96 Sep 3 15:20

drwxr-xr-x+ 55 flavio staff 1760 Sep 3 15:20

-rw-r--r-- 1 flavio staff @ Sep 3 15:20 words txt
bash-3.2$

screen shot 2020-09-09 at 17.54.31.png
#i flavio— fish /Users/flavio — -fish — 62x7

[+ ~ crontab -1
crontab: no crontab for flavio

screen shot 2020-09-07 at 07.37.51.png
#i flavio— fish /Users/flavio — -fish — 44x8

[+ ~ uname -mp
x86_64 1386

screenshot 2019-02-10 at 09.11.05.png
ash-scripting — less /Users/flaviocopes/wwwiflaviocopes.com/content/post/cli/bash-scripting — less index.md — 72x...
— Ll

title: "Introduction to Bash Shell Scripting"

date: 2019-01-15T07:00:00+02:00

description: "A detailed overview to scripting the Bash Shell"
tags: cli

Shell scripting is an powerful way to automate tasks that you regularly
execute on your computer.

In this tutorial I give an extensive overview of shell scripting, and wi
11 be the base reference for more in-depth and advanced tutorials on cre
ating practical shell scripts.

> Check out my [introduction to Bash](/bash/) post.

Bash gives you a set of commands that put together can be used to create
little programs, that by convention we call scripts.

Note the difference. We don't say Bash programming but Bash scripting, a
nd we don't call Bash scripts "Bash programs". This is because you can g

screen shot 2020-09-03 at 15.30.19.png
flavio — bash /Users/flavio — bash — 61x5

[bash-3.2$ alias
alias 11='ls -al'
bash-3.2$

screen shot 2020-09-07 at 07.37.41.png
#i flavio— fish /Users/flavio — -fish — 44x8

[+ ~ uname
Darwin

screen shot 2020-09-04 at 09.42.04.png
flavio — bash /Users/flavio — bash — 77x7
bash-3.2$ grep -n document.getElementById index.md

60:document . getElementById('button').addEventListener('click', O => {
128: document.getElementById('button').addEventListener('click', O = {
bash-3.2$

screen shot 2020-09-09 at 18.07.49.png
flavio — bash /Usersiflavio
[bash-3.2$ EDITOR=nano crontab -e
crontab: installing new crontab
Ibash-3.2$ crontab -1

bash-3.2$

screen shot 2020-09-04 at 09.42.10.png
flavio — bash /Users/flavio — bash — 77x7

|bash-3.2$ grep document.getElementById index.md

document . getElementById('button').addEventListener('click', OO = {
document . getElementById('button').addEventListener('click',) = {

bash-3.2$

screen shot 2020-09-09 at 18.07.40.png
o e fi L
GNU nano /tmp/crontab 0t2KZjmTC Modified

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) ?.

Cancel

screen shot 2020-09-04 at 09.44.35.png
flavio — bash /Users|flavio — bash — 76x16

|bash-3.2$ grep -nC 2 document.getElementById index.md

60:document . getElementById('button').addEventListener('click', O => {
61- //item clicked
62-1)

126-""js

127-window.addEventListener('load', () = {

128: document.getElementById('button').addEventListener('click', O = {
129- setTimeout(() => {

130- items.forEach(item => {

bash-3.2$

screen shot 2020-09-07 at 07.38.01.png
#i flavio— fish /Users/flavio — -fish — 44x8

[+ ~ uname -n
mbp.local

screen shot 2020-09-07 at 07.37.56.png
4 flavio — fish /Users/flavio — -fish — 44x8
[+ ~ uname -srv]
Darwin 19.6.0 Darwin Kernel Version 19.6.0:
Thu Jun 18 20:49:00 PDT 2020; root:xnu-6153.
141.1~1/RELEASE_X86_64

screen shot 2020-09-07 at 08.38.50.png
flavio— fish /Users/flavio — -fish — 40x15

~ cat dogs.txt

screen shot 2020-09-07 at 08.37.49.png
#4 flavio — fish /Users/flavio — -fish — 44x8
sort dogs.txt | uniq -c | sort -nr
Syd

Roger

Vanille

Tina
Luna
Ivica

screen shot 2020-09-07 at 08.37.15.png
flavio— fish /Users/flavio — -fish — 40x17.

~ cat dogs.txt

sort dogs.txt | uniq -c
Ivica

Luna

Roger

Syd

Tina

Vanille

screen shot 2020-09-07 at 07.57.08.png
flavio — fish /Users/flavio — -fish — 52x11

~ sort dogs.txt
Ivica

screen shot 2020-09-07 at 07.56.28.png
flavio — less /Users/flavio — less dogs.txt — 52x11

screen shot 2020-09-07 at 07.59.03.png
GNU nano dogs. txt

Roger
Syd
Vanille
Luna
Ivica
Tina
Roger
Syd

&8 Get Heldl WriteOugl Read Fildi Prev Pagl{ Cut Te Cur Pos
& Exit ¥ Justif Where IV Next Pagl] UnCut To Spel

screen shot 2020-09-07 at 07.57.28.png
#i flavio— fish /Users/flavio — -fish — 51x9

[+ ~ sort -r dogs.txt
Vanille

Tina
Syd
Roger
Luna
Ivica

screen shot 2020-09-07 at 08.01.27.png
cee # flavio — man /Usersflavio — less « man sort — 11655
SORT(1) BSD General Commands Manual SORT(1)

NAME
sort -- sort or merge records (lines) of text and binary files

SYNOPSIS
sort [-bcCdfghiRMmnrsuvz] [-k fieldil,field2]] [-S memsize] [-T dir] [-t char] [-o output]
[file ...]
sort --help
sort --version

DESCRIPTION
The sort utility sorts text and binary files by lines. A line is a record separated from the sub-
sequent record by a newline (default) or NUL '\@' character (-z option). A record can contain any
printable or unprintable characters. Comparisons are based on one or more sort keys extracted
from each line of input, and are performed lexicographically, according to the current locale's
collating rules and the specified command-line options that can tune the actual sorting behavior.
By default, if keys are not given, sort uses entire lines for comparison.

The command line options are as follows:

-c, --check, -C, --check=silentlquiet
Check that the single input file is sorted. If the file is not sorted, sort produces the
appropriate error messages and exits with code 1, otherwise returns 0. If -C or
--check=silent is specified, sort produces no output. This is a "silent" version of -c.

-m, --merge
Merge only. The input files are assumed to be pre-sorted. If they are not sorted the
output order is undefined.

-0 output, --output=output
Print the output to the output file instead of the standard output.

-S size, --buffer-size=size
Use size for the maximum size of the memory buffer. Size modifiers %,b,K,M,G,T,P,E,Z,Y
can be used. If a memory limit is not explicitly specified, sort takes up to about 9% of
available memory. If the file size is too big to fit into the memory buffer, the tempo-
rary disk files are used to perform the sorting.

--temporary-directory=dir
Store temporary files in the directory dir. The default path is the value of the environ-
ment variable TMPDIR or /var/tmp if TMPDIR is not defined.

-u, --unique
Unique keys. Suppress all lines that have a key that is equal to an already processed
one. This option, similarly to -s, implies a stable sort. If used with -c or -C, sort
also checks that there are no lines with duplicate keys.

Stable sort. This option maintains the original record order of records that have an
equal key. This is a non-standard feature, but it is widely accepted and used.

--version
Print the version and silently exits.

screen shot 2020-09-07 at 07.59.16.png
flavio— fish /Users/flavio

[+ ~ sort -u dogs.txt
Ivica

screen shot 2020-09-07 at 08.36.50.png
flavio — fish /Users/flavio — -fish — 40x13

~ cat dogs.txt

~ sort dogs.txt | uniq -d
Roger
Syd

screen shot 2020-09-07 at 08.39.35.png
flavio— fish /Users/flavio — -fish — 40x17.

~ cat dogs.txt

~ sort dogs.txt | uniq
Ivica
Luna

screen shot 2020-09-03 at 15.44.33.png
flavio — bash /Users/flavio — bash — 61x5
|bash-3.2$ echo "The path variable is $PATH"

The path variable is /usr/local/bin:/usr/bin:/bin:/usr/sbin:/
sbin:/Library/Apple/usr/bin

bash-3.2$

screen shot 2020-09-07 at 09.02.32.png
cee # flavio—man Usersfflavio —less « man diff— 115

DIFF(1) User Commands DIFF(1)

NAME
diff - compare files line by line

SYNOPSIS
diff [OPTION]... EILES

DESCRIPTION
Compare files line by line.

-i --ignore-case
Ignore case differences in file contents.

ignore-file-name-case
Ignore case when comparing file names.

--no-ignore-file-name-case
Consider case when comparing file names.

--ignore-tab-expansion
Ignore changes due to tab expansion.

--ignore-space-change
Ignore changes in the amount of white space.

--ignore-all-space
Ignore all white space.

--ignore-blank-lines
Ignore changes whose lines are all blank.

RE --ignore-matching-lines=RE
Ignore changes whose lines all match RE.

--strip-trailing-cr
Strip trailing carriage return on input.

--text
Treat all files as text.

~C NUM --context[=NUM]
Output NUM (default 3) lines of copied context.

-U NUM --unified[=NUM]
Output NUM (default 3) lines of unified context.

--label LABEL
Use LABEL instead of file name.

-p --show-c-function
Show which C function each change is in.

~F RE --show-function-line=RE

screen shot 2020-09-03 at 15.46.36.png
flavio — bash /Users/flavio — bash — 61x5

[bash-3.2$ echo ~
/Users/flavio
bash-3.2$

screen shot 2020-09-03 at 15.51.18.png
flavio — bash /Users/flavio — bash — 61x5
[bash-3.2$ echo The cost is $5

The cost is

[bash-3.2$ echo The cost is \$5

The cost is $5
bash-3.2$

screen shot 2020-09-07 at 08.56.05.png
flavio— fish /Users/flavio — -fish — 50x5

~ diff dogs.txt moredogs.txt
2a3

> Vanille

screen shot 2020-09-07 at 08.55.18.png
flavio — fish /Users/flavio — -fish — 50x8

~ cat dogs.txt

~ cat moredogs.txt
Roger
Syd
Vanille

screen shot 2020-09-07 at 08.57.56.png
#i flavio— fish /Users/flavio — -fish — 86x9

~ diff -y dogs.txt moredogs.txt

Roger
Syd
> Vanille

screen shot 2020-09-07 at 08.56.10.png
flavio— fish /Users/flavio — -fish — 50x5

|+ ~ diff moredogs.txt dogs.txt
3d2

< Vanille

screen shot 2020-09-07 at 09.01.07.png
o0 testing — fish /Users/flaviotesting — -fish — 68x13
dogs. txt

dogs. txt
diff -u dirl dir2
diff -u dirl/dogs.txt dir2/dogs.txt
--- dirl/dogs.txt 2020-09-07 08:54:56.000000000 +0200

+++ dir2/dogs.txt 2020-09-07 08:55:09.000000000 +0200
@@ -1,2 +1,3 @@

Roger

Syd

+Vanille

screen shot 2020-09-07 at 08.58.23.png
#i flavio— fish /Users/flavio — -fish — 67x8

~ diff -u dogs.txt moredogs.txt
--- dogs.txt 2020-09-07 08:54:56.000000000 +0200

+++ moredogs . txt 2020-09-07 08:55:09.000000000 +0200
ee -1,2 +1,3 ee

Roger
Syd
+Vanille

screen shot 2020-09-07 at 09.01.30.png
I testing — fish /Users/flaviojtesting — -fish — 68x5
testing diff -rq dirl dir2
Files dirl/dogs.txt and dir2/dogs.txt differ
testing

