

 Table of Contents

 	

 Preface

 	

 The Laravel Handbook

 	

 Conclusion

 Preface

 Preface

 The Laravel Handbook follows the 80/20 rule: learn in 20% of the time the 80% of a topic.

In particular, the goal is to get you up to speed quickly with Laravel.

This book is written by Flavio. I publish programming tutorials on my blog flaviocopes.com and I organize a yearly bootcamp at bootcamp.dev.

You can reach me on Twitter @flaviocopes.

Enjoy!

 The Laravel Handbook

 The Laravel Handbook

 0. Table of contents

	0. Table of contents

	1. Introduction to Laravel

	2. Getting started

	3. Blade

	4. Dynamic routes

	5. Adding a database

	6. How to use migrations to create and modify the database schema

	7. Using forms to accept user input and store it into the database

	8. Adding a better layout

	9. Adding the form at the bottom of the list

	10. Allow users to delete dogs from the list

	11. Adding authentication using Laravel Breeze

	12. Only authenticated users can add items to the database

	13. Push the app code to GitHub

	14. Deployment

	15. Dynamic routes

	16. Non-web routes

	17. Creating commands

	18. Where to go from here

The goal of this handbook is to get you up and running with Laravel, starting from zero knowledge.

I will only teach you the basics, and once you’re done with this you’ll have the knowledge you need to dive deeper.

1. Introduction to Laravel

Laravel is one of those legendary frameworks that everyone using it loves.

To me, it’s in the same level of Rails and Django.

If you know/prefer Ruby you use Rails.

If you know/prefer Python you use Django.

If you know/prefer PHP you use Laravel.

Generally speaking I mean, because each of those languages has a ton of alternatives.

I would say Laravel, together with WordPress, is the “PHP killer app”.

PHP is often diregarded by developers, but it has some unique features that make it a great language for Web Development and Laravel figured out how to take advantage of the best features of PHP.

On Twitter I can only see love for Laravel.

Much like how it happens for Rails.

This is not a “new framework of the month” kind of thing. Laravel has been around since 2011, well before modern frontend tools like React and Vue.js existed.

It stood the test of time. And it evolved over the years to a serious and complete solution for building Web Applications, which comes out of the box complete with everything you need.

Something like Laravel does not exist in pure JavaScript tooling.

Things like Next.js or Remix appear very primitive in some aspects, while in some other aspects they seem more modern.

It’s just a different tool.

And I think as Web Developers we must know in which scenario one tool is more optimal than others. So we can make the best technical choice depending on the requirements.

In this handbook I am going to give a introduction to Laravel to get you up and running.

2. Getting started

To get started with Laravel, you need to set up your PHP environment on your computer.

You can do this in various ways.

Before going on, remove any older PHP installations you might have done in the past. How exactly depends on how you installed PHP on your machine. Hopefully you haven’t any and we can go on.

On macOS, use Homebrew (install Homebrew first if you haven’t already) and install both PHP and Composer using

brew install php composer

(might take a while)

Once installed you should be able to run the php -v command to get the version of PHP installed (same for composer -v):

[image:]

Now you can go into folder on your computer that you reserve for development. I have a dev folder in my home directory, for example.

In there, run:

composer create-project laravel/laravel first

To create a new project in a folder called first.

Now go into that folder and run php artisan serve:

cd first
php artisan serve

[image:]

php artisan <some_command> is something you’ll use often in Laravel, as it can do a lot of useful stuff for you. For example we’ll use it to “scaffold” models without having to create files by hand.

Open your browser and you’ll see the default welcome screen of a Laravel app:

[image:]

If you have troubles reaching this stage, the official documentation has great guides for macOS, Linux and Windows.

Open the newly created project folder in VS Code.

This should be the file structure:

[image:]

While you’re here I recommend you install the extensions

	Laravel Extra Intellisense

	Laravel Artisan

	Laravel Blade Snippets

	PHP tools for VS Code

We have a bunch of folders and a bunch of files.

The first thing you’re going to look at is the .env file.

It contains a lot of configuration options, called environment variables, for your app:

[image:]

For example in this portion of the file you can see we set the app name, the debug flag, the URL, settings related to logging, to the database connection, email sending and much more.

One very useful folder is config. Here’s for example the config/app.php file:

[image:]

Each file in the folder contain a lot of configuration options you can set, very well documented.

What’s the difference between config files and the .env file? Environment variables in .env can be changed depending on the deployment, for example locally in development you can have debug enabled, while on the production server you don’t want that.

Some options in config files, like the ones you see above, make use of the env() Laravel helper function to get the environment variable.

While options stored directly in the config folder hardcoded are “one for all environments”.

Before looking at changing any of the configuration options, let’s modify what you see in the browser.

Open the routes folder and you’ll 4 files. Open web.php:

[image:]

This is the code that displays the sample home page of the Laravel application:

[image:]

We made a request to the / relative URL (http://127.0.0.1:8000/), which means the “home page”.

This URL is handled in the routes/web.php file, which contains the router dedicated to handling HTTP requests coming from the browser.

In this file, as shown in the screenshot, we tell Laravel to return the welcome view when someone visits the / URL using the GET HTTP method (the one used when you open the page in the browser):

Route::get('/', function () {
 return view('welcome');
});

To do this we use the view() Laravel helper, which knows where to find the welcome view because Laravel uses a set of conventions.

We have folders and files dedicated to holding specific, well-defined parts of our applications.

In this case the welcome view is defined in the file resources/views/welcome.blade.php:

[image:]

You can clear all the content of this file, and type <h1>test</h1> into it. Save (cmd-s or ctrl-s) and reload in the browser, the homepage content will switch to displaying this string:

[image:]

So now you know for sure that this file is responsible for what’s shown on that URL!

Now let’s add a second page.

In routes/web.php, add:

//...

Route::get('/test', function () {
 return view('welcome');
});

This will render the welcome view also when the /test route is called:

[image:]

[image:]

You can show a different content by creating a new view in resources/views and using that view in the route, for example create a new view resources/views/test.blade.php

resources/views/test.blade.php

<h1>new view!</h1>

routes/web.php

//...

Route::get('/test', function () {
 return view('test');
});

Here is the result:

[image:]

Notice that any URL that does not have a specific entry in routes/web.php renders a “404 not found” page:

[image:]

You can customize this error page. Here’s how: create an errors folder in resources/views, and in there create a 404.blade.php file. Add any content, like

And this will be rendered for 404 errors:

[image:]

You didn’t have to do anything more than creating the file, because Laravel has this set of conventions, so adding a file in the right place with the right name will do something specific.

3. Blade

The view files that end with .blade.php and are Blade templates.

Blade is a server-side templating language.

In its basic form it’s HTML. As you can see, those templates I used above don’t have anything other than HTML.

But you can do lots of interesting stuff in Blade templates: insert data, add conditionals, do loops, display something if the user is authenticated or not, or show different information depending on the environment variables (e.g. if it’s in production or development), and much more.

Here’s a 101 on Blade (for more I highly recommend the official Blade guide).

In the route definition, you can pass data to a Blade template:

Route::get('/test', function () {
 return view('test', ['name' => 'Flavio']);
});

and use it like this:

<h1>{{ $name }}</h1>

The {{ }} syntax allows you to add any data to the template, escaped.

Inside it you can also run any PHP function you like, and Blade will display the return value of that execution.

You can comment using {{-- --}}:

{{-- <h1>test</h1> --}}

Conditionals are done using @if @else @endif:

@if ($name === 'Flavio')
 <h1>Yo {{ $name }}</h1>
@else
 <h1>Good morning {{ $name }}</h1>
@endif

There’s also @elseif, @unless which let you do more complex conditional structures.

We also have @switch to show different things based on the result of a variable.

Then we have shortcuts for common operations, convenient to use:

	@isset shows a block if the argument is defined

	@empty shows a block if an array does not contain any element

	@auth shows a block if the user is authenticated

	@guest shows a block if the user is not authenticated

	@production shows a block if the environment is a production environment

Using the @php directive we can write any PHP:

@php
 $cats = array("Fluffy", "Mittens", "Whiskers", "Felix");
@endphp

We can do loops using these different directives

	@for

	@foreach

	@while

Like this:

@for ($i = 0; $i < 10; $i++)
 Count: {{ $i }}
@endfor

 @foreach ($cats as $cat)
 {{ $cat }}
 @endforeach

Like in most programming languages, we have directives to play with loops like @continue and @break.

Inside a loop a very convenient $loop variable is always available to tell us information about the loop, for example if it’s the first iteration or the last, if it’s even or odd, how many iterations were done and how many are left.

This is just a basic intro. We’ll see more about Blade with components later.

4. Dynamic routes

We’ve seen how to create static routes with Laravel.

Sometimes you want your routes to be dynamic.

This will be especially useful with databases, but let’s do an example without first.

In routes/web.php add an entry like this:

Route::get('test/{name}', function($name) {
 return view('test', ['name' => $name]);
});

and in resources/views/test.blade.php write this code:

@if (isset($name))
 <h1>Hello {{$name}}</h1>
@else
 <h1>Test</h1>
@endif

Now if you navigate with your browser to the /test/flavio route, “flavio” is the $name parameter in the route, which is passed to the view, so you can print it in the Blade template:

[image:]

Change the route parameter, the name in the HTML changes:

[image:]

5. Adding a database

We’re using Laravel in a very basic form, without any database.

Now I want to set up a database and configure Laravel to use it.

After we’ve configured the database, I’ll show you how to use forms to accept user input and store data in the database, and how to visualize this data.

I’ll also show you how you can use data from the database with dynamic routes.

The easiest way to use a database is by using SQLite.

SQLite is just a file hosted in your site, no special setup needed.

Open the .env file, and instead of the default configuration

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=laravel
DB_USERNAME=root
DB_PASSWORD=

add

DB_CONNECTION=sqlite

Laravel will automatically create a SQLite database in database/database.sqlite the first time you run a migration.

6. How to use migrations to create and modify the database schema

Migrations are excellent for handling changes to the database, so you can apply them, and roll back in case you need to restore to a previous state of your data.

From the terminal, stop the Laravel server and run this command to create a new migration, which is what we will use to create the database table(s) we need to use:

php artisan make:migration initial_table_creation

[image:]

This command created the 2023_05_11_080724_initial_table_creation.php file (the date and time will of course change for you) in the database/migrations folder.

[image:]

Notice there are other migrations, which are added by the Laravel framework itself for it’s authentication system.

But let’s focus on creating a new table, let’s call it dogs.

Go in the up() function of the migration we creataed.

Let’s create a dogs table with 3 columns, an id, a name string and the timestamp utility columns (created_at and updated_at, as we’ll see).

Schema::create('dogs', function (Blueprint $table) {
 $table->id();
 $table->string('name');
 $table->timestamps();
});

[image:]

Now from the terminal run the command

php artisan migrate

And Laravel will apply the migrations that have not been applied yet, which at this point means all the migrations you see in the migrations folder:

[image:]

If you open the database/database.sqlite file using a database visualization tool like TablePlus (free version, available for all operating systems) you will see the newly created tables, including the one we defined:

[image:]

If you do a mistake in a migration, you can rollback any change in a migration using

php artisan migrate:rollback

and this rolls back the latest changes you did to the database.

Find more about migrations on the official migrations guide.

7. Using forms to accept user input and store it into the database

Now we’re going to create a form to add dogs to the table.

To do so, first we create a Dog model.

What’s a model? A model is a class that allows us to interact with data stored in the database.

Each model represents a specific table in the database, and we use it to create, read, update and delete records.

Create the model from the terminal with this command:

php artisan make:model Dog

[image:]

This creates a model in app/Models/Dog.php:

[image:]

Notice the class inclues some classes under a “Eloquent” folder.

Eloquent is an ORM (object-relational mapper), a tool that basically lets us interact with a database using a (PHP, in this case) class.

The model has a corresponding table, which we do not mention, but it’s the dogs table we created beforehand because of the naming convention dogs table → Dog model.

We’re going to use this model to add an entry to the database.

We’ll show the user a form and they can add a dog name, and click “Add” and the dog will be added to the database.

First we add the name field we added to the table to an array named $fillable:

protected $fillable = ['name'];

Like this:

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;

class Dog extends Model
{
 use HasFactory;
 protected $fillable = ['name'];
}

A model is a resource, and once you define a model you’ll later be able to create a new resource, delete, update it.

Now let’s build a form to add a new dog to the database.

Let’s add a new entry to routes/web.php

Route::get('/newdog', function () {
 return view('newdog');
});

We create a controller named DogController:

php artisan make:controller DogController

Laravel adds a DogController.php file into the folder app/Http/Controllers/

What is a controller? A controller takes an action and determines what to do.

For example we’ll create a form that sends a POST request to the /dogs route.

The router will say “this controller is in charge” and will tell us which method to use.

Inside the controller we write methods that perform actions, like adding data to the database, or updating it.

If you’re unsure what is a POST request, check my HTTP tutorial.

We will start by adding a create method to the controller to handle the data coming from the form, so we can store that to the database.

Before doing so, in routes/web.php we add the POST /dogs route handle controller and we assign it the name dog.create

We also add a /dogs route which we call dogs. We now render the dogs view in it, which we have to create yet:

use App\Http\Controllers\DogController;

//...

Route::post(
 '/dogs',
 [DogController::class, 'create']
)->name('dog.create');

Route::get('/dogs', function () {
 return view('dogs');
})->name('dogs');

[image:]

In resources/views/ create a newdog.blade.php file, which contains a form whose action attribute points to the dog.create route:

<form method="post" action="{{ route('dog.create') }}">
 @csrf
 <label>Name</label>
 <input type="text" name="name" id="name">
 <input type="submit" name="send" value="Submit">
</form>

Run php artisan serve if you stopped the service, and go to http://127.0.0.1:8000/newdog

The style is not brilliant, but the form shows up:

[image:]

Now back to the app/Http/Controllers/DogController.php file.

Inside the class we import the Dog model, and we add the create method which will first validate the form, then store the dog into the database.

Finally we redirect to the index route:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use App\Models\Dog;

class NewDogFormController extends Controller
{
 public function create(Request $request)
 {
 $this->validate($request, [
 'name' => 'required',
]);
 Dog::create($request->all());

 return to_route('index');
 }
}

Now back to the form, enter a name and click “Submit”:

[image:]

You will be redirected to /dogs, after the new dog was saved to the database.

[image:]

In the browser there’s an error now but don’t worry - it’s because we haven’t added a dogs view yet.

[image:]

In this view we’ll visualize the database data.

Create the file resources/views/dogs.blade.php and in there we’re going to loop over the $dogs array with Blade to display the data to the user:

@foreach ($dogs as $dog)
 {{ $dog->name }}
@endforeach

This data does not come from nowhere. It must be passed to the template.

So in routes/web.php we now have

Route::get('/dogs', function () {
 return view('dogs');
})->name('dogs');

and we have to first retrieve the data from the model, and pass it to the view.

First we import the model at the top of the file:

use App\Models\Dog;

Then in the route we call Dog::all(); to get all the dogs stored and we assign them to a $dogs variable which we pass to the template:

Route::get('/dogs', function () {
 $dogs = Dog::all();
 return view('dogs', ['dogs' => $dogs]);
})->name('dogs');

Here’s the result:

[image:]

[image:]

8. Adding a better layout

Now that we got data working, let’s clean up the routes a bit, add a more beautiful design.

I have this list of views we used in our tests:

[image:]

Remove test.blade.php and welcome.blade.php.

In routes/web.php we’re going to show the dogs view on /, which we name the index route, and we show the form to add a new dog on /newdog. Doing a POST request on that route will trigger the create method on the DogController to save the dog to the database. Remove all the other routes.

<?php

use Illuminate\Support\Facades\Route;
use App\Models\Dog;

/*
|--
| Web Routes
|--
|
| Here is where you can register web routes for your application. These
| routes are loaded by the RouteServiceProvider and all of them will
| be assigned to the "web" middleware group. Make something great!
|
*/

Route::get('/newdog', function () {
 return view('newdog');
});

Route::post(
 '/dogs',
 [DogController::class, 'create']
)->name('dog.create');

Route::get('/', function () {
 $dogs = Dog::all();
 return view('dogs', ['dogs' => $dogs]);
})->name('index');

Ok!

Now you should see the list of dogs on the / route:

[image:]

In resources/views/dogs.blade.php we now have a super simple

@foreach ($dogs as $dog)
 {{ $dog->name }}
@endforeach

which does not even contain any HTML.

The browser renders that because it tries its best to display something useful, but let’s do things properly.

Here’s a start: we add the proper HTML structure and we wrap the dogs list in an unordered list:

<!doctype html>
<html>

<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0">
</head>

<body>
 <h1>
 Dogs
 </h1>

 @foreach ($dogs as $dog)
 {{ $dog->name }}
 @endforeach

</body>

</html>

[image:]

The next thing we’ll do is configure Vite, so we can enable styling using Tailwind CSS, a very useful library.

First go back to the terminal.

Run this:

npm install -D tailwindcss postcss autoprefixer

If you don’t have npm installed yet, install Node.js first.

This command will create a package.json file, a package-lock.json and a node_modules folder.

Then run this:

npx tailwindcss init -p

This will create the tailwind.config.js and the postcss.config.js files.

(see my npx tutorial if you’re new to that, it’s installed automatically with Node.js, as npm).

Now open tailwind.config.js and add this:

/** @type {import('tailwindcss').Config} */
export default {
 content: ["./resources/**/*.blade.php"],
 theme: {
 extend: {},
 },
 plugins: [],
};

In resources/css/app.css add this:

@tailwind base;
@tailwind components;
@tailwind utilities;

Finally, back to the terminal, run npm run dev and keep it running while developing the site, as php artisan serve (run both in 2 different terminal windows).

[image:]

Now we’re ready to use Tailwind CSS in our Blade templates!

Add this line to the page head:

<!doctype html>
<html>

<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0">
 @vite('resources/css/app.css')

If you refresh the page, you can see immediately that something changed. It’s Tailwind adding some default normalization, so that’s a sign it’s working!

[image:]

Now we can add classes to our HTML body to style the page a bit:

<body class="p-4">
 <h1 class="font-bold border-b-gray-300 border-b pb-2 mb-3">
 Dogs
 </h1>

 @foreach ($dogs as $dog)
 {{ $dog->name }}
 @endforeach

</body>

Here’s the result, much better!

[image:]

Notice that changes are applied automatically when you save the file in VS Code, without refreshing the page. Both changes in the Blade template, and in the Tailwind CSS classes. That’s some “magic” provided by Vite and Laravel in development mode.

9. Adding the form at the bottom of the list

Now I want to do something. On http://127.0.0.1:8000/newdog we still got the “add dog” form. But I want to add it at the bottom of this list.

How do we do that? Using subviews.

Using the @include directive we can include a view within another view.

So let’s include the “new dog form” in the dogs.blade.php template:

<!doctype html>
<html>

<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0">
 @vite('resources/css/app.css')

</head>

<body class="p-4">
 <h1 class="font-bold border-b-gray-300 border-b pb-2 mb-3">
 Dogs
 </h1>

 @foreach ($dogs as $dog)
 {{ $dog->name }}
 @endforeach

 @include('newdog')
</body>

</html>

It works!

[image:]

But now since we use Tailwind, the form looks different than the “standalone” route to add a new dog:

[image:]

Let’s style it a bit:

<form method="post" action="{{ route('dog.new') }}">
 @csrf
 <h3 class="font-bold border-b-gray-300
 border-b pb-2 mb-3 mt-4">
 Add a new dog</h3>
 <label>Name</label>
 <input type="text" name="name" id="name"
 class="border border-gray-200 p-1">
 <input type="submit" name="send" value="Submit"
 class="bg-gray-200 p-1 cursor-pointer
 border border-black">
</form>

Here’s the result:

[image:]

Now, we don’t want the form to have its own route any more, because we have it on /.

So let’s create a folder named partials in resources/views and move the file resources/views/newdog.blade.php to resources/views/partials/form.blade.php

In resources/views/dogs.blade.php change

@include('newdog')

to

@include('partials.form')

and in routes/web.php you can now delete the GET route that showed that form on /newdog:

Route::get('/newdog', function () {
 return view('newdog');
});

10. Allow users to delete dogs from the list

We allow users to add dogs to the list.

Let’s allow them to remove them, too.

Here’s how.

First we add a “delete” button next to each item:

 @foreach ($dogs as $dog)
 <li class="flex mb-1">
 {{ $dog->name }}
 <form action="{{ route('dog.delete', $dog->id) }}"
 method="POST">
 @csrf
 @method('DELETE')
 <button type="submit" class="border
 bg-gray-200 p-1 border-black">Delete</button>
 </form>

 @endforeach

We use Flexbox to align the dog name and the delete button. Adding the flex-1 class makes the text take all the space available, and “pushes” the button to the far right.

Then we add a route named dog.delete to the routes/web.php file:

Route::delete(
 '/dog/{id}',
 [DogController::class, 'delete']
)->name('dog.delete');

This calls the delete method on the DogController, so we go to app/Http/Controllers/DogController.php and we add it:

//...

class NewDogFormController extends Controller
{
 //...
 public function delete($id)
 {
 $dog = Dog::find($id);
 $dog->delete();

 return to_route('index');
 }
}

This method uses the Dog model to find a dog with a specific id, which is passed by the form, and deletes it calling the delete() method.

Here is how it looks:

[image:]

11. Adding authentication using Laravel Breeze

We don’t want random people to come to the website and edit data.

We want people to log in first.

If logged out they will see the list of dogs.

If logged in they will have the ability to edit the list.

Laravel provides us built-in authentication support in the framework.

To make things even easier, it provides Breeze, an application starter kit tool that will create what we need in no time. Breeze scaffolds user registration, login, password reset, profile page, dashboard… and even API authentication. It’s great. For more advanced needs we also have JetStream, but Breeze is easier to set up.

First, create a new Laravel project, so we start from a clean slate.

The first one was named first, so to continue the tradition we’ll call this second project second:

composer create-project laravel/laravel second

Go into that folder:

cd second

Install breeze using composer:

composer require laravel/breeze --dev

Now run

php artisan breeze:install

and pick option 0, “blade”, and pick the default options for the other questions artisan asks you:

[image:]

Now you can run php artisan serve and go to http://127.0.0.1:8000/.

You’ll see the “Log in” and “Register” links:

[image:]

All the login functionality is working out of the box:

[image:]

[image:]

Laravel added a ton of resources to achieve this.

Easily days of work for a developer, and it’s battle-tested code which you don’t want to write yourself, as it’s a quite important and needs to be well tested for security issues.

I recommend you take a look at the file structure and compare it to the first project. Lots of new stuff has been added, for example views:

[image:]

But before we can go on, we have to set up the database for this project, doing what we did in the first one. We go to the .env file and comment those lines:

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=laravel
DB_USERNAME=root
DB_PASSWORD=

and add

DB_CONNECTION=sqlite

to configure the SQLite database.

Now run

php artisan migrate

[image:]

In another terminal folder, run npm install followed by npm run dev, which is a long running process you’ll keep running alongside php artisan serve (⚠️ just make sure you’re running those in the second folder and not the first project, I just spent 15 minutes trying to figure out why I had a problem).

The Blade templates provided by Breeze use Tailwind CSS, and the setup of Tailwind was done automatically when we ran php artisan breeze:install

As you can see we already have a tailwind.config.js file.

Now you can open resources/views/welcome.blade.php and look at all that content. For the sake of simplicity, swap everything in that file with this trimmed-down version:

<!doctype html>
<html>

<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0">
 @vite('resources/css/app.css')
</head>

<body class="p-4">

 @if (Route::has('login'))
 <div class="text-right">
 @auth
 Dashboard
 @else
 Log in
 @if (Route::has('register'))

 Register
 @endif
 @endauth
 </div>
 @endif

 <h1 class="pb-2 mb-3 font-bold border-b border-b-gray-300">
 Dogs
 </h1>

 <div>
 @auth
 <p>Logged in</p>
 @endauth

 @guest
 <p>Not logged in</p>
 @endguest
 </div>

</body>

</html>

@auth / @endauth and @guest / @endguest are two Blade directives that allow you to show content (or not) depending on the logged in state.

This should be the result in the browser:

[image:]

Click the Register link to create a new account:

[image:]

Create an account and you will be shown a dashboard page at the /dashboard route:

[image:]

If you go back to the home, you will see the page in the logged in state:

[image:]

12. Only authenticated users can add items to the database

Now let’s re-implement what we did in the first project but this time we show the dogs list when logged out, but we’ll only allow logged in users to modify the data.

First we create a new migration:

php artisan make:migration create_dogs_table

Open the newly created migration file, in my case database/migrations/2023_05_12_164831_create_dogs_table.php

<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

return new class extends Migration
{
 /**
 * Run the migrations.
 */
 public function up(): void
 {
 Schema::create('dogs', function (Blueprint $table) {
 $table->id();
 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 */
 public function down(): void
 {
 Schema::dropIfExists('dogs');
 }
};

We just modify the migration a little adding a name for the dog:

Schema::create('dogs', function (Blueprint $table) {
 $table->id();
 $table->string('name');
 $table->timestamps();
});

Save the file, go back to the terminal, run php artisan migrate

[image:]

Now we scaffold the Dog model:

php artisan make:model Dog

Go to routes/web.php.

At the top, add

use App\Models\Dog;

then find the / route:

Route::get('/', function () {
 return view('welcome');
});

and change it to this to retrieve the dogs list and pass it to the view, which we label index:

Route::get('/', function () {
 $dogs = Dog::all();
 return view('welcome', ['dogs' => $dogs]);
})->name('index');

Now in resources/views/welcome.blade.php we can loop over the dogs array using @foreach like this:

<h1 class="pb-2 mb-3 font-bold border-b border-b-gray-300">
 Dogs
</h1>

<div>
 @foreach ($dogs as $dog)
 <li class="flex mb-1">
 {{ $dog->name }}

 @endforeach

 @auth
 <p>Logged in</p>
 @endauth

 @guest
 <p>Not logged in</p>
 @endguest
</div>

If you refresh the home you’ll see nothing changed because we don’t have any dog in the list.

[image:]

We can actually show an “empty state” using @forelse.

Instead of

@foreach ($dogs as $dog)
 <li class="flex mb-1">
 {{ $dog->name }}

@endforeach

use this:

@forelse ($dogs as $dog)
 <li class="flex mb-1">
 {{ $dog->name }}

@empty
 <p>No dogs yet</p>
@endforelse

[image:]

We don’t have dogs in the table yet, but you can open the database using TablePlus and insert data using this SQL query:

INSERT INTO "dogs" ("id", "name", "created_at", "updated_at") VALUES
('1', 'Roger', '2023-05-11 09:27:20', '2023-05-11 09:27:20'),
('2', 'Syd', '2023-05-11 09:29:52', '2023-05-11 09:29:52'),
('3', 'Botolo', '2023-05-11 09:29:57', '2023-05-11 09:29:57'),
('4', 'Zoe', '2023-05-11 09:30:12', '2023-05-11 09:30:12');

[image:]

Now when we’re logged in I want to display the form to add a new dog, and the delete button for each dog in the list.

First, inside the Dog model class we add the name to an array named $fillable:

protected $fillable = ['name'];

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;

class Dog extends Model
{
 use HasFactory;
 protected $fillable = ['name'];
}

We create a controller named DogController:

php artisan make:controller DogController

This created the app/Http/Controllers/DogController.php file:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class DogController extends Controller
{
 //
}

Add use App\Models\Dog; at the top, and add those 2 methods to the class, create and delete, as we did before, but this time both first check that the user is logged in:

<?php

namespace App\Http\Controllers;

use Illuminate\Support\Facades\Auth;
use Illuminate\Http\Request;
use App\Models\Dog;

class DogController extends Controller
{
 public function create(Request $request)
 {
 if (Auth::check()) {
 $this->validate($request, [
 'name' => 'required',
]);
 Dog::create($request->all());
 }
 return to_route('index');
 }

 public function delete($id)
 {
 if (Auth::check()) {
 $dog = Dog::find($id);
 $dog->delete();
 }

 return to_route('index');
 }
}

Ok now we need a route to add a a new dog, and one to delete a dog. In routes/web.php, add:

use App\Http\Controllers\DogController;

//...

Route::post(
 '/dogs',
 [DogController::class, 'create']
)->name('dog.create');

Route::delete(
 '/dog/{id}',
 [DogController::class, 'delete']
)->name('dog.delete');

Now we can display the buttons to remove dogs in resources/views/welcome.blade.php:

@forelse ($dogs as $dog)
 <li class="flex mb-1">
 {{ $dog->name }}
 @auth
 <form action="{{ route('dog.delete', $dog->id) }}"
 method="POST">
 @csrf
 @method('DELETE')
 <button type="submit" class="p-1 bg-gray-200 border
 border-black">Delete</button>
 </form>
 @endauth

@empty
 <p>No dogs yet</p>
@endforelse

We wrap it into @auth to make it only visible if logged in.

[image:]

Try clicking one “delete” button, the corresponding row should disappear.

If logged out, here’s what you see:

[image:]

Now let’s add the form to add a new dog. Before we used a partial, to see how you can use partials, but now let’s just add it to the welcome template:

@auth
 <form method="post" action="{{ route('dog.create') }}">
 @csrf
 <h3 class="pb-2 mt-4 mb-3 font-bold border-b border-b-gray-300">
 Add a new dog</h3>
 <div class="flex">
 <div class="flex-1">
 <label>Name</label>
 <input type="text" name="name" id="name"
 class="p-1 border border-gray-200 ">
 </div>
 <input type="submit" name="send" value="Submit"
 class="p-1 bg-gray-200 border border-black
 cursor-pointer">
 </div>
 </form>
@endauth

Here’s the full code for reference:

<!doctype html>
<html>

<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1.0">
 @vite('resources/css/app.css')
</head>

<body class="p-4">

 @if (Route::has('login'))
 <div class="text-right">
 @auth
 Dashboard
 @else
 Log in
 @if (Route::has('register'))

 Register
 @endif
 @endauth
 </div>
 @endif

 <h1 class="pb-2 mb-3 font-bold border-b border-b-gray-300">
 Dogs
 </h1>

 @forelse ($dogs as $dog)
 <li class="flex mb-1">
 {{ $dog->name }}
 @auth
 <form action="{{ route('dog.delete', $dog->id) }}"
 method="POST">
 @csrf
 @method('DELETE')
 <button type="submit"
 class="p-1 bg-gray-200 border border-black">
 Delete</button>
 </form>
 @endauth

 @empty
 <p>No dogs yet</p>
 @endforelse

 @auth
 <form method="post" action="{{ route('dog.create') }}">
 @csrf
 <h3 class="pb-2 mt-4 mb-3 font-bold border-b
 border-b-gray-300">Add a new dog</h3>
 <div class="flex">
 <div class="flex-1">
 <label>Name</label>
 <input type="text" name="name" id="name"
 class="p-1 border border-gray-200 ">
 </div>
 <input type="submit" name="send" value="Submit"
 class="p-1 bg-gray-200 border border-black
 cursor-pointer">
 </div>
 </form>
 @endauth

</body>

</html>

[image:]

Try it, it should work!

13. Push the app code to GitHub

Before going to the next chapter, deployment, let’s push the code to GitHub.

If you don’t have a GitHub account yet, and you have no idea what is Git, check out

	https://flaviocopes.com/git/

	https://flaviocopes.com/github/

and the tutorial https://flaviocopes.com/github-setup-from-zero/

I want you to create a Git repository, push the repository to GitHub, so that you have the code up there, ready to be deployed:

[image:]

[image:]

14. Deployment

It’s all fun and all, but now we want to deploy the application on a real server, on the Internet, so people can use it.

There are many different ways to deploy a Laravel application.

Probably the best one is using Laravel Forge, the official deployment platform, combined with DigitalOcean.

When it comes to servers, and unless you like managing servers and you’re actually an expert, I am a fan of investing some money and saving time instead.

Forge in particular is official, made by the core team of Laravel, lots and lots of people use it (they claim over 500,000 sites are powered by Forge), and we can trust that to work as expected.

Forge does not provide a server to you. But it’s a service that connects to DigitalOcean and other VPS - virtual private server - providers like Hetzner, AWS, Vultr and more and it creates a server for you on that platform.

You could directly use a VPS, of course. Follow a tutorial, set everything up, invest hours into basically doing what Forge can do with a few simple steps. It’s a matter of convenience.

And in the long run, Forge can upgrade PHP for example with a simple click. If that’s left to you to manage, it’s more complicated.

Anyway, pick your poison. Spend time and effort, or spend some money and focus on your app.

How much money? Not much, $12/month. And it has a free trial.

Go to https://forge.laravel.com/ and click the “Start a free trial” button:

[image:]

Once you’re in, click “Connect to GitHub” to connect Forge to GitHub so it can pull your code:

[image:]

[image:]

Now it’s time to connect to a server provider.

[image:]

I pick DigitalOcean.

If you’re unsure, DigitalOcean gives you free credits, so you can try it out.

I click the link to create an API token and I generate one

[image:]

[image:]

and finally I copy the code to Forge.

I now have access to the servers dashboard

[image:]

Here’s where you need to create the subscription. I picked the Hobby plan for $12/m, with a free trial of 5 days:

[image:]

Now back to the servers page, I can create a new server:

[image:]

Here you can change the type of server you want to create. Pick “App Server” as it contains all you’re going to need.

Pick a region near you, and pick a modest server size, so you can save on server costs until someone actually uses your app (you can always upgrade the server later via the DigitalOcean panel)

In Advanced Settings you can configure more details such as the Operating System, Database and PHP version:

[image:]

I picked Postgres because I like that more, but it’s just a preference.

Click Create Server and the installation process starts:

[image:]

It will take some minutes, after which you’ll have your server up and running.

A server perfectly configured to run Laravel, already set up with the Nginx server, database, and much more.

Once it’s done, here is the control panel of your server. On the left, there’s a menu that gives you access to specific menus.

[image:]

For example you have access to server logs through “Logs”:

[image:]

You can see the scheduled jobs in “Scheduler”:

[image:]

…and lots more.

Back to the Sites menu.

You can restart the entire server, or specific services, throught the Restart drop down menu:

[image:]

which is very handy, and you can deploy new sites on this server.

Each server can host multiple different sites.

There is a default one already set up, and if you copy and paste the public IP address of the server in your browser, you’ll see it working:

[image:]

Now let’s deploy the application on this site.

Ideally what you want to do is, you create a new site with a domain / subdomain assigned.

But it’s starting to become complicated for this handbook, so we’ll just use the default site which works on the IP address instead.

Click the default site in the dashboard and you’ll see the site panel:

[image:]

We have the site in GitHub, so click “Git Repository”:

[image:]

Now type the name of the repository you want to deploy prefixed with the GitHub account name, in my case flaviocopes/second, select the branch (usually main) and click Install Repository.

After a while it’s done!

[image:]

But if you go to the IP address again, there’s an error:

[image:]

Mmmm! We don’t see more details because now the site is in a production environment, and we don’t show detailed logs to users.

To figure out the problem let’s go back to the panel, open Logs and you’ll see the error is related to connecting to the database.

[image:]

If you look closely in the GitHub repository you will see the .env file was not pushed to GitHub, and this is correct because you don’t want to store the environment variables in Git.

In the Forge site config click the Environment tab, this is where you will edit your environment variables:

[image:]

Comment the DB_* fields and add

DB_CONNECTION=sqlite

[image:]

Click Save and then Deploy Now.

[image:]

If you go to the deployments menu you can inspect the deployment output, which is handy:

[image:]

If the build fails, you’ll get an alert and also an email, pretty nice.

The build seems to work fine but if you reload the browser we have another error now. Something about Vite.

Remember we ran npm run dev to start Vite in development?

Now we have to run npm run build, after running npm install.

We need to update our Deploy Script from the App tab, adding this at the end:

npm install
npm run build

[image:]

Then click Update and Deploy Now.

Now it works!

[image:]

Also try registering in, it will work as expected and we’ll be able to add and edit data:

[image:]

Nice! We’re done with deployments and Forge.

We could spend more time on this topic, but there’s so much more to explore.

We’ve seen how to create a Web Application, as simple as it could be, just a form that stores a field into a database, but complete with ready-made authentication provided by the Breeze starter kit.

We’ve seen basic routing, and models, views and controllers interact to store and retrieve data through the Eloquent ORM.

Let’s now move to other aspects of Laravel.

15. Dynamic routes

We’ve seen how to create a route in the routes/web.php file:

Route::get('/dogs', function () {
 return view('dogs');
})->name('dogs');

This is a static route, that responds on the /dogs URL.

Now suppose you want to create a page for each single dog, maybe you’ll fill that with a description, an image, whatever.

You can’t create a static route for each dog in the database, because you don’t know the name of the dog.

Imagine you have 2 dogs Max and Daisy, this would display a “dog” view (which we don’t have yet) on the /dogs/max and /dogs/daisy:

Route::get('/dogs/max', function () {
 return view('dog');
})

Route::get('/dogs/daisy', function () {
 return view('dog');
})

What we do instead is, we have a dynamic segment in the URL:

Route::get('/dogs/{slug}', function () {
 return view('dog');
})

slug is a term that identifies a URL portion in lowercase and without spaces, for example if the name of the dog is Max, the slug is max.

Now we can pass the slug value to the callback function (the function that’s called when the route is hit), and inside the function we can pass it to the view:

Route::get('/dogs/{slug}', function ($slug) {
 return view('dog', ['slug' => $slug]);
})

Now the $slug variable is available inside the Blade template.

But we want to retrieve the actual dog data. We have the slug, which we can imagine it’s stored in the database when we add the dog.

To do that, we use the Dog model in the route, like this:

use App\Models\Dog;

Route::get('/dogs/{slug}', function ($slug) {
 $dog = Dog::find($slug)
 return view('dog', ['dog' => $dog]);
})

16. Non-web routes

In the routes folder you have web.php, but not just that file. We have api.php, channels.php and console.php.

	web.php handles HTTP requests from web browsers

	api.php handles API endpoints. We use it to create an API that can be used for example by a mobile application, or directly by the users (if that’s something you want them to)

	console.php contains routes used by the command line interface, Artisan. We can write command line applications for our app, in PHP, and execute them, it’s pretty handy

17. Creating commands

We’ve used Artisan, the Laravel command line tool, to perform various actions:

	php artisan serve

	php artisan make:migration

	php artisan migrate

	php artisan make:model

	php artisan make:controller

	php artisan breeze:install

Those are all built-in commands.

There are many, many more.

Some you’ll use often, some you’ll never use.

Run php artisan to see them all with a short explanation:

[image:]

And to see how to use a command in particular, run php artisan <command> -h:

[image:]

You can create your own commands, too.

Run

php artisan make:command MyCommand

This creates a file in app/Console/Commands/MyCommand.php pre-filled with some code:

<?php

namespace App\Console\Commands;

use Illuminate\Console\Command;

class MyCommand extends Command
{
 /**
 * The name and signature of the console command.
 *
 * @var string
 */
 protected $signature = 'app:my-command';

 /**
 * The console command description.
 *
 * @var string
 */
 protected $description = 'Command description';

 /**
 * Execute the console command.
 */
 public function handle()
 {
 //
 }
}

$signature defines how the command will be called, in this case you can run it using

php artisan app:my-command

In the handle() method you’ll write the code that runs when the command is executed.

public function handle()
{
 //
}

The simplest code could be printing something to the console, for example:

public function handle()
{
 $this->info('test!');
}

Now try running php artisan app:my-command:

[image:]

You can do lots of things in a command. You can accept arguments, interactively ask something to the user using prompts to confirm or asking for input, or let them choose between different options, you can format output in different ways…

Commands are great to perform one-off tasks, maintenance, and much more. Inside a command you have access to all the goodies provided by Laravel, including your own code, classes, and more.

You can also call other commands. And commands can be ran by any part of your Laravel app.

You can also schedule commands using schedules. The server can be configured to run Laravel’s schedules, and then any schedule configured in Laravel will be executed as needed.

18. Where to go from here

We've reached the end of the handbook!

This is intended to be a hands-on, quick introduction to Laravel.

Definitely not a complete guide. But I think that now you can go start building an app using Laravel.

What are you waiting for?

 Conclusion

 Conclusion

 Thanks a lot for reading this book.

For more, head over to flaviocopes.com.

Send any feedback, errata or opinions at flavio@flaviocopes.com

untitled 4.png
B
L X

Jo

EXPLORER

\/ OPEN EDITORS

5

i

v

X & .env
FIRST (1
> app

bootstrap
config
database
public
resources
routes
storage

vendor

.editorconfig

BOLO&

env

>
>
>
>
>
>
>
> tests
>
e
ed
$

.env.example
.gitattributes
.gitignore

= artisan

{

} composer.json

{} composer.lock

{

} package.json

& phpunit.xml
@ README.md
Js vite.config.js

{% > TIMELINE

- ®oA0

o env

& env

© ®NO oA ®WN R

W WWONRNNRNRNNMRNNNNERRRBRR BB BB
XN FP S ©®IOAS®®NRLS ©®NDOa NN RES

0 first

APP_NAME=Laravel
APP_ENV=1local

APP_KEY=base64:eS4UWUTQc f 3W30CgdOuX1N@DMwYetotgDb2308VML/k=

APP_DEBUG=true
APP_URL=http://localhost

LOG_CHANNEL=stack
LOG_DEPRECATIONS_CHANNEL=nu1l
LOG_LEVEL=debug

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=1aravel
DB_USERNAME=root
DB_PASSWORD=

BROADCAST_DRIVER=1o0g
CACHE_DRIVER=file
FILESYSTEM_DISK=local
QUEUE_CONNECTION=sync
SESSION_DRIVER=file
SESSION_LIFETIME=120

MEMCACHED_HO0ST=127.0.0.1

REDIS_HOST=127.0.0.1
REDIS_PASSWORD=null
REDIS_PORT=6379

MAIL_MAILER=smtp
MAIL_HOST=mailpit
MAIL_PORT=1025
Ln1,Col1 Spaces:2 UTF-8 LF

Properties @ Prettier & (3

untitled 5.png
B
L X

/O EXPLORER

\ OPEN EDITORS
X ® app.php config

v FIRST DEBELA
@ > app

> bootstrap

v config

[mameote]
® auth.php
® broadcasting.php
® cache.php
® cors.php
® database.php
= filesystems.php
hashing.php
logging.php
* mail.php
 queue.php
sanctum.php
= services.php
& session.php
* view.php
> database
public

resources
routes
storage
tests

>

>

>

>

>

> vendor

1 .editorconfig

o env

$.env.example
.gitattributes
.gitignore

£ artisan

{% 1} comnoser.ison
> TIMELINE

- ®oA0

= app.php X

0 first D8 08

config > ® app.php

1

© ® N O ON®WN

WWWONNNRNNNNNNNERRRERRRRR R
OO S O©O®IOAONRES ©®ONO®aN®WNERS

<?php

use Illuminate\Support\Facades\Facade;
use Illuminate\Support\ServiceProvider;

return [

| This value is the name of your application. This value is used when the
| framework needs to place the application's name in a notification or
| any other location as required by the application or its packages.

/
*/

'name' => env('APP_NAME', 'Laravel'),

| This value determines the "environment" your application is currently
running in. This may determine how you prefer to configure various
g y YA g
| services the application utilizes. Set this in your ".env" file.

/
*/

‘env' => env('APP_ENV', 'production'),

Ln1,Col1 Spaces:4 UTF-8 LF PHP QPrettier & (2

untitled 2.png
B

000 B Laavel X+

<

- C © 127.0.0.1:8000

]

Documentation

Laravel has wonderful documentation covering every aspect of the
framework. Whether you are a newcomer or have prior experience with
Laravel, we recommend reading our documentation from beginning to
end

Laravel News

Laravel News is a community driven portal and newsletter aggregating all
of the latest and most important news in the Laravel ecosystem,
including new package releases and tutorials.

Sponsor

h % - @2 @O0 *=0O¢

>

Laracasts =

Laracasts offers thousands of video tutorials on Laravel, PHP, and
JavaScript development. Check them out, see for yourself, and
massively level up your development skills in the process.

®

Vibrant Ecosystem

Laravel's robust library of first-party tools and libraries, such as Forge, Vapor, Nova,
and Envoyer help you take your projects to the next level. Pair them with powerful
open source libraries like Cashier, Dusk, Echo, Horizon, Sanctum, Telescope, and

more.

Laravel v10.10.0 (PHP v8.2.5)

untitled 3.png
. A
[X X) & > L first (= 03

p EXPLORER

\/ OPEN EDITORS
5 v FIRST

> app
18

> bootstrap

> config

> database

> public

> resources

> routes

> storage

> tests

> vendor

1 .editorconfig

3 env

$.env.example
.gitattributes
.gitignore

£ artisan Show All Commands

{} composer.json

{} composer.lock Go to File

{} package.json

S phpunit.xml

(@ README.md Start Debugging

Js vite.config.js

Find in Files

Toggle Terminal

{% > TIMELINE

= ®0AO0 Prettier & 0

untitled.png
» «~ php -v
PHP 8.2.5 (cli) (built: Apr 13 2023 17:59:46) (NTS)
Copyright (c) The PHP Group
Zend Engine v4.2.5, Copyright (c) Zend Technologies
with Zend OPcache v8.2.5, Copyright (c), by Zend Technologies
-+ ~ composer -v

/7 7 _\/ \/ _\ _\ __/_\ __/
/ /_ _//_////////_///_/() _//
NI\ S SIS eI\ IN__]_/

/_/
Composer version 2.5.5 2023-03-21 11:50:05

untitled 1.png
» dev cd first
-» first php artisan serve

EREGN Server running on [http://127.0.0.1:8000].

Press Ctrl+C to stop the server

untitled 47.png
@ Laravel

O @ incognito

C ® 127.0.0.1:80(

Name
Email
Password

Confirm Password

Already registered?

untitled 49.png
@ 127.0.0.1:8000

& C ® 127.0.0.1:8000 S N | 6 Incognito

Dashboard
Dogs

Logged in

untitled 48.png
@ Laravel

® 127.0.0.1:8000/dashboard Q o @ #& O @ incognito
@ Dashboard flavio v
Dashboard

You're logged in!

untitled 6.png
&

Jo

P

@

EXPLORER

\/ OPEN EDITORS
X ™ web.php routes
\ FIRST

> app
bootstrap

database
public
> resources

>
> config
>
>

\ routes

* api.php

channels.php

& console.php

= web.php

> storage

> tests

> vendor

£ .editorconfig

i env

$.env.example
.gitattributes
.gitignore

£ artisan

{} composer.json

{} composer.lock

{} package.json

3 phpunit.xml

@® README.md

Js vite.config.js

{% > TIMELINE

~ ®oAo0

« >

% web.php X

routes > ® web.php
1 <?php

0 first

use Illuminate\Support\Facades\Route;

© ® N oA ®N
~
*

BB R
w N RS

/
*/

B R B
© N o oA

1);
I

i
©

Route::get('/', function () {
return view('welcome');

Ln 19, Col 1

| Here is where you can register web routes for your application. These
| routes are loaded by the RouteServiceProvider and all of them will
| be assigned to the "web" middleware group. Make something great!

Spaces:4 UTF-8 LF PHP @ Prettier

A

(&4

y

untitled 51.png
@ 127.0.0.1:8000

& C ® 127.0.0.1:8000 S N | 6 Incognito

Dashboard
Dogs

Logged in

untitled 7.png
B

000 3 Laavel X+

<

- C © 127.0.0.1:8000

]

Documentation

Laravel has wonderful documentation covering every aspect of the
framework. Whether you are a newcomer or have prior experience with
Laravel, we recommend reading our documentation from beginning to
end

Laravel News

Laravel News is a community driven portal and newsletter aggregating all
of the latest and most important news in the Laravel ecosystem,
including new package releases and tutorials.

Sponsor

h % - @2 @O0 *=0O¢

>

Laracasts =

Laracasts offers thousands of video tutorials on Laravel, PHP, and
JavaScript development. Check them out, see for yourself, and
massively level up your development skills in the process.

®

Vibrant Ecosystem

Laravel's robust library of first-party tools and libraries, such as Forge, Vapor, Nova,
and Envoyer help you take your projects to the next level. Pair them with powerful
open source libraries like Cashier, Dusk, Echo, Horizon, Sanctum, Telescope, and

more.

Laravel v10.10.0 (PHP v8.2.5)

untitled 50.png
- second git:(main) php artisan migrate
Running migrations.
2023_05_12_164831_create_dogs_table 2ms DONE

-+ second git:(main) I

cover.jpg
LARAVEL
HANDBOOK

FLAVIO COPES

untitled 42.png
@ Laravel

® 127.0.0.1:8000/login

Email

Password

Remember me

Forgot your password?

untitled 41.png
000 3 Laavel x o+

C ® 127.0.0.1:8000

m

Documentation

Laravel has wonderful documentation covering
every aspect of the framework. Whether you are a
newcomer or have prior experience with Laravel,

we recommend reading our documentation from

beginning to end.

Laravel News

Laravel News is a community driven portal and
newsletter aggregating all of the latest and most
important news in the Laravel ecosystem, including
new package releases and tutorials.

Sponsor

@0 »=0€¢

h ok w @ 8

Login Register

o

Laracasts

Laracasts offers thousands of video tutorials on
Laravel, PHP, and JavaScript development. Check
them out, see for yourself, and massively level up
your development skills in the process

®

Vibrant Ecosystem

Laravel's robust library of first-party tools and libraries, such as
Forge, Vapor, Nova, and Envoyer help you take your projects
to the next level. Pair them with powerful open source libraries

more.

Laravel v10.10.1 (PHP v8.2.5)

untitled 44.png
Covviews e
v auth

& confirm-password.blade.php
& forgot-password.blade.php
& |ogin.blade.php

& register.blade.php

®® reset-password.blade.php

e & & & & =

& verify-email.blade.php

v components

& application-logo.blade.php

& auth-session-status.blade.php
® danger-button.blade.php

& dropdown-link.blade.php

& dropdown.blade.php
input-error.blade.php
input-label.blade.php

modal.blade.php
nav-link.blade.php
primary-button.blade.php
responsive-nav-link.blade.php

3333333

secondary-button.blade.php

=S e 6 G & @ & G G & s & =

& text-input.blade.php

untitled 43.png
@ Laravel

® 127.0.0

Forgot your password? No problem. Just let us know your email
address and we will email you a password reset link that will
allow you to choose a new one.

Email

EMAIL PASSWORD RESET LINK

untitled 46.png
@ 127.0.0.1:8000

C ©® 127.0.01 L N | @ Incognito

Login Register
Dogs

Not logged in

untitled 45.png
-
00 ~/d/second npm run dev ~/d/first

|

=

-

second git:(main) x php artisan migrate
The SQLite database does not exist: database/database.sqlite.

Would you like to create it? (yes/no) [nol
yes

ENEBN Preparing database.

Creating migration table

IENEBN Running migrations.

2014_10_12_000000_create_users_table
2014_10_12_100000_create_password_reset_tokens_table
2019_08_19_000000_create_failed_jobs_table
2019_12_14_000001_create_personal_access_tokens_table

second git:(main) x JJ

DONE

DONE
DONE
DONE
DONE

untitled 58.png
4 A

o000 ‘ flaviocopes/second X + v
& 5 C @& github.com/flaviocopes/second (EN L ¢ '. ® 2 @ ©@ © ¢ » 0O (]
O Q_ Search or jump to... / Pull requests Issues Codespaces Marketplace Explore
& flaviocopes [second (Private ® Unwatch 1 ~ - Yy Star 0~
<> Code (©) Issues {7 Pullrequests (») Actions Projects () Security [~ Insights 2 Settings

main + ¥ 1branch ©0tags Go to file Add file ~ - About b

No description, website, or topics

@ flaviocopes add and show dogs 6c46459 now 'O 3 commits provided.
B app add and show dogs now 0 Readme
¥ O stars
B8 bootstrap Initial setup with breeze yesterday
® 1watching
M config Initial setup with breeze yesterday % 0 forks
I8 database add and show dogs now
B8 public Initial setup with breeze yesterday Releases
I8 resources add and show dogs now No releases published
Create a new release
B routes add and show dogs now
Bn storage Initial setup with breeze yesterday
Packages
M tests Initial setup with breeze yesterday
No packages published
[.editorconfig Initial setup with breeze yesterday Publish your first package
[.env.example Initial setup with breeze yesterday

untitled 57.png
LN J

@ Current Repository iz Current Branch 4 Publish repository
second main = Publish this repository to GitHub

Eé] An updated version of GitHub Desktop is available and will be installed at the next launch. See what's new or restart GitHub Desktop.

Changes History

0 changed files

riendly suggestions

Open in Visual Studio Code |

@ | Summary (required)

Description

View the files of your repository in Finder

Show in Finder
Repository menuor 3 ¢ F ‘

Committed just now
add and show dogs
N g

untitled 60.png
a
LN Authorize application x 4+ v

<« C & github.com/loginjoauth/authorize?client_id=fdb28071bd05daebc... & h % vy @ # @ @ @ @ *» O (]

Authorize Laravel Forge

Laravel Forge by The Laravel Framework
wants to access your flaviocopes account

Public SSH keys v
Admin access

Repository webhooks and services v
Admin access

5 O a@

Repositories v
Public and private

Hll

Conce! _

Authorizing will redirect to
http:/[forge.laravel.com

@ Not owned or © Created [y More than 1K
operated by GitHub 10 years ago GitHub users

Learn more about OAuth

untitled 59.png
@ forge.laravel.com

Features

FORGE

Pricing

Docs

Signin

Server management doesn't

have to be a nightmare

Provision and deploy unlimited PHP applications on DigitalOcean,
Akamai, Vultr, Amazon, Hetzner and more.

Start a free trial Learn more

FORGE Search

B Servers @ Sites

Servers

AllServers

0 emoyer-an

R
wra

® Connected ® Connected

| Tpe—— [E] ervover-worker-s

® Connected ® Connected

@ cictes [Recipes

B Leam

[E] covoreertsenss

® Connected

@ e
-

® Connected

\‘ envoyer-redis
v

® Connected

0 foroes

® Connected

Register

.

w Taylor Otwell

2 Create Server

Y 4 -

untitled 62.png
Laravel Forge

@ forge.laravel.com;

Server Providers

We'll need the API key for at least one provider so we can build your servers. Don't worry, you can connect more
providers later within your account settings.

If you plan on only using your own Custom VPS servers you can skip this step.

C a v H|

DigitalOcean Akamai AWS Vultr Hetzner Cloud

You can create a new DigitalOcean AP access token for yourself or your team from the DigitalOcean API settings panel.

API Token

untitled 61.png
F Laravel Forge

@ forge.laravel.com)

Servers @ sites (2) circles) Recipes B Docs

FORGE

Great!

Next, let's connect to a source control and server provider so Forge can create servers on your behalf.

ust joining a circle?
If you are just joining a circle to collaborate with a friend or teammate using Forge, you can skip these steps. If you
want to connect to a server provider or source control provider at a later time, you may do so from your account

profile.

Skip This Step

Source Control
Forge needs to know where to find your application’s code. Connect with one or more of your preferred source control
providers below to get started. You can always connect to additional source control providers at a later time within your

I Connect to GitLab

Connect to Bitbucket Use a custom Git provider

untitled 53.png
@ 127.0.0.1:8000

& C ® 127.0.0.1:8000 e » O % Incognito

Dashboard
Dogs

Roger
Syd
Botolo
Zoe

Logged in

untitled 52.png
@ 127.0.0.1:8000

C ©® 127.0.01 L N | @ Incognito

Dashboard
Dogs

No dogs yet
Logged in \

untitled 55.png
@ 127.0.0.1:8000

Login Register
Dogs

Roger
Syd

untitled 54.png
@ 127.0.0.1:8000 X +

C ©® 127.0.01 @ % » 0O @ Incognito

Dashboard
Dogs

Roger Delete

untitled 56.png
@ 127.0.0.1:8000 X +

C ® 127.0.01 Q@ % *» 0O @ Incognito
Dashboard
Dogs
Roger Delete

Add a new dog

untitled 67.png
L JF Servers Overview | Laravel For X AP| Tokens - DigitalOcean

forge.laravel.com,

Create Server Manage Providers X

D | ®

DigitalOcean Akamai Hetzner Custom VPS

Everything you need to deploy your PHP / Laravel application.
Deploy your app in minutes with this all-in-one provisioned server.

PHP Nginx Database Redis Memcached Meilisearch
Name Type

floral-surf C App Server

Region Server Size

New York 1 3GB RAM - 1CPU Cores - 60GB SSD

Private Network Network Name

Create New

Advanced Settings

untitled 69.png
Provisioning: floral-surf | Lara

& forge.laravel.com

FORGE B servers @ sites (9) circles 2 Recipes @ Docs [mm}] ' Flavio

< Back to Servers Credential Server ID Server Type ® Building
%) floral-surf X Destroy Server
Public IP Region

_Waiting On Your Server To Become Ready

We are waiting to hear from your server to confirm it is ready to be provisioned. Hang tight, this
could take a few minutes.

€& Preparing Your Server

€& Configuring Swap

€ Installing Base Dependencies

€& Installing PHP

€ Installing Nginx

€ Installing Database

€& Installing Redis

€ Installing Memcached

untitled 68.png
Servers Overview | Lara

forge.laravel.com

Create Server Manage Providers

0 | ®

DigitalOcean Hetzner Custom VPS

Everything you need to deploy your PHP / Laravel application.

Deploy your app in minutes with this all-in-one provisioned server.
PHP Nginx Database Redis ~ Memcached Mellisearch

Name Type

floral-surf ¢} App Server

Region Server Size

Frankfurt 512MB RAM - 1 CPU Core - 10GB SSD

Private Network

default-fral
Server OS PHP Version

Ubuntu 22.04 LTS (Jammy) 82

(D Ubuntu22.04 includes OpenSSL 3.0.0, which is only supported by PHP 8.1 and later. If you require an older
version of PHP, you should provision an Ubuntu 20.04 server

Database Database Name

MySQL (8.0) forge

Add Server's SSH Key To Source Control Providers (D

Enable DigitalOcean Weekly Backups

untitled 71.png
floral-surf | Laravel Forge floral-surf | Laravel Forge

@ forge.laravel.co ilename=ph

FORGE B3 servers @ sites (2) circles () Recipes [Docs [} @ Flavio

< Backto Servers Credential Server ID Server Type ® Connected
£) floral-surf G Restart v stop
Public IP Private IP Region
Sites
Server Logs M M C X Viewlog v (/var/log/php8.2-fpm.log)
9
Database
08:41:40] NOTICE: fpm is running, pid 30569
SSH Keys 08:41:40] NOTICE: ready to handle connections
May-2023 08:41:40] NOTICE: systend monitor interval set to 10000ms
May-2023 08:41:42] NOTICE: Terminating
Monitoring [13-May-2023 08:41:42] NOTICE: exiting, bye-bye
[13-May-2023 08:41:42] NOTICE: fpm is running, pid 31070
3 08:41:42] NOTICE: ready to handle connections
Backups May-2023 08: NOTICE: systemd monitor interval set to 10000ms
[13-May-2023 08:41:53] NOTICE: Terminating
D [13-May-2023 08:41:53] NOTICE: exiting, bye-bye!
[13-May-2023 0! NOTICE: fpm is running, pid 31364
[13-May-2023 08:41:53] NOTICE: ready to handle connections
Packages [13-May-2023 08: NOTICE: systemd monitor interval set to 10000ms
[13-May-2023 08: NOTICE: Terminating
[13-May-2023 0! NOTICE: exiting, bye-bye!
Nginx Templates [13-May-2023 08:43:45] NOTICE: fpm is running, pid 31993
3 08:43:45] NOTICE: ready to handle connections
May-2023 0 NOTICE: systend monitor interval set to 10008ms
Scheduler 08:47:26] NOTICE: Terminating
3 08:47:26] NOTICE: exiting, bye-bye!
Da— 08:47:29] NOTICE: fpm is running, pid 41414
08:47:29] NOTICE: ready to handle connections
08:47:29] NOTICE: systend monitor interval set to 10000ms
Network
Logs
Events

Integrations

Meta

g the last 500 lines from /var/1og/php8. 2-fpm. Log

untitled 70.png
floral-surf | Laravel Forge

@ forge.laravel.com;

FORGE 3 servers @ sites (9 Circles @ Recipes B Docs Q ' Flavio

< Backto Servers Credential Server ID Server Type ® Connected §

2) floral-surf CRestart v @ stop v

Public IP Private IP Region

Sites .

New Site v
Database

Asite represents a “domain” on your server. A *default’ site is included with each freshly provisioned server. You should delete it and create

SSHKeys anew site with a valid domain name when you are ready to launch your production site. Learn more.
Monitoring Root Domain Project Type
Backups General PHP / Laravel v
o Aliases

Advanced [XTETSS
Packages

Nginx Templates

SITE PHP DEPLOYED

Scheduler
default

Daemons 82 Never Deployed
No App Installed

Network

Logs

Events

Integrations

Meta

untitled 73.png
isioned s¢
1 more.

@ e

Res
Res
Res

Res

Res

art

art

art

art

art

Server

Nginx

Redis

Supervisor v
PHP 82 ate

untitled 72.png
floral-surf | Laravel Forge floral-surf | Laravel Forge

& forge.laravel.com

FORGE 3 servers @ sites (2) circles (9 Recipes [Docs [} 9 Flavio

< Backto Servers Credential Server ID Server Type ® Connected
2 floral-surf G Restort v @ stop v
Public IP Private IP Region
Sites
New Scheduled Job <
Database
SSH Keys Scheduled Jobs
Monitoring D Frequency Cron User ommand
el 1268215 Custom 20 16 % % % root usr/local/bin/conposer self-update ® Active
PHP
1268216 Weekly 0 0 x * 0 root autoremo n ® Active
Packages

Nginx Templates

Scheduler

Daemons

Network

Logs

Events

Integrations

Meta

untitled 64.png
Laravel Forge

@ cloud.digitalocean.com/ac

New personal access token

Token name

Enter token name

Laravel Forge v
Expiration

No expiry v

Select scopes

Write (optional)

personal access token documentation

Generate Token

untitled 63.png
Laravel Forge x AP Tokens - DigitalOcean x

@ cloud.digitalocean.com

f) Q_ Search by resource name or public IP (Cmd+B)

PROJECTS

Applications & API

MANAGE

Billing Tokens Spaces Keys OAuth Applications

Support
Settings

API

 Cloudways 7

5 SnapShooter 2

& Marketplace 2

& Product Docs 2

%
s

8

)

G

Authorized Applications

@

Personal Access Tokens

Personal access tokens function like a combined name and password for API
Authentication. Generate a token to access the DigitalOcean API

Generate New Token

Flavio
Estimated costs: $0.00

untitled 66.png
Forge API Tokens - DigitalOcean

@& forge.laravel.com;

Forge

Billing Management

Signed in as ’ Flavio.

Managing billing for Flavio

Our billing management portal allows you to
conveniently manage your subscription plan, payment
methods, and download your recent invoices.

Return to Forge

(@ Your subscription has been started successfully. X

Current Subscription Plan

You are currently within your free trial period. Your trial will expire on May 18, 2023.

Hobby
$12/ monthly

The hobby plan allows you to manage a single server; however, you may still create
unlimited sites and deployments.

@ Single Server

@ Unlimited Sites

@ Unlimited Deployments
@ Push To Deploy

O Your payment method will be charged automatica

CHANGE SUBSCRIPTION PLAN

y for each billing period.

untitled 65.png
Servers Overview | Laravel For X API Tokens - DigitalOcean

@ forge.laravel.com;

FORGE 53 servers @ sites (9) circles [2) Recipes B Docs) e Flavio

Servers

All Servers s 83 £3 Create Server

There are no active servers associated with your account.

To get started managing servers using Laravel Forge, start a free trial on one of our
affordable billing plans.

untitled 78.png
@ Server Error X +

A Not Secure | 209.38.237.58

untitled 77.png
default floral-surf [Laravel Fo. X default loral-surf | Laravel Fo. X default floral-surt | Laravel F

& forge.laravel.com

FORGE B severs @ Sites) Circles (3] Recipes Q g Flavio
< Backto floral-surf Server ID SitelD User o Active
© default © seiftep v B EditFies

Put Private P
b2 Deployment

Deployments Quick deploy allows you to easily deploy your projects when you push to source control. When you push to this application's deployment branch,

Forge will pull your latest code from source control and execute your deployment script
Commands

Notifications
Deploy Script

Environment

Queue ome/F
git pull origin SFORGE_SITE
Sst SFORGE_COMPOSER install ~-no prefer-dist autoloader
Security € flock
; sudo _PHP_FPM reload) 9/tmp/ foml
Redirects £ artisan 1
RGE_PHP artisan migrate
Logs
Meta

Make . env variables available to deploy script

Deployment Trigger URL

Using a custom Git service, or want a service like Chipper C! to run your tests before your application is deployed to Forge? Its simple. When you
commit fresh code, or when your continuous integration service finishes testing your application, instruct the service to make a GET or POST request
to the following URL. Making a request to this URL will trigger your Forge deployment script:

(D) Wttps://forge. Laravel. con/servers/681352/51tes/1979485/deploy/ 57 token=1qaF BoAOGZYORZPNWOTAHIGRAHLSHubTa36 TRy)

Q

Refresh Site Token

untitled 80.png
® ® 5 default]floral-surf | Laravel Fo X

@ forge.laravel.com/serve

FORGE B Servers Sites

Circles [Recipes [Docs g @ ree

< Back to floral-surf Server ID Site ID User Active

default Self Help v Edit Files v
Public IP Private IP Region

App y .
Site Environment

Deployments

Below you may edit the . env file for your application, which is the default environment file that is loaded by Laravel applications. If the

@areras application is uninstalled, the environment file will also be removed

Packages
PP_NAME=Laravel
PP_ENV=production
Notifications T
PP_DEBUG-false
PP_Uf

Securlty £-laravel
ME=Forge

Redirects

Logs

Meta

Reload

untitled 79.png
F default | floral-surf | Laravel Fo X | F default | floral-surf | Laravel Fo X = F default| floral-surf | Laravel Fc X

@ forge.laravel.com/serve

FORGE

< Back to floral-surf

default

Public IP

App
Deployments
Commands
Packages
Notifications
Environment
Queue

ssL

Security

Redirects

Meta

Servers Sites (@) circles () Recipes [Docs -] @ Flavio
Server ID Site ID User Active
Self Help v Edit Files v
Private IP Region
Site Logs M M C X View Log v

] production.ERROR: SQLSTATE[@8006] [7] Eonnection o server at “127.00001%, lhort 5432 failed: FATAL

rge/default/vendor/laravel/framework/src/I1luminate/Database/Connection.php(753): Illuminate\\Database\\Conne;
home/forge/default/vendor/laravel rk/src/I1luminate/Database/Connection.php(405): Illuminate\\Database\\Conne
forge/ /vendor/laravel, rc/I1luminate/Database/Qu uilder.php(2718): Illuminate\\Database\\C
/vendor/laravel. /I1luminate/Database/Query/Builder.php(2707): Illuminate\\Database\\Q
vendor/laravel/fr r /T11uminate/Database/Query/Builder.php(3248): Illuminate\\Database\\Q
/vendor/laravel, 3 11luminate/Database/Qu uilder.php(2706): Illuminate\\Database\\Q:
ge/default/vendor/laravel/framework/src/Illuminate/Database/Eloquent/Builder.php(717): Illuminate\\Database
default/vendor/1aravel/framework/src/I1luminate/Database/ELoguent/Builder.php(701): Illuminate\\Databa:
vendor/laravel/framework/src/I1luminate/Database/Eloguent/Model . php(674): Illuminate\\Datab
/ Database\\Eloguent\\Model: :al1()
vendor/laravel/fr rk/src/I1luminate/Routing/CallableDispa .php(40): Illuminate\\Routing
ndor/1aravel/framework/src/I1luminate/Routing/Route.php(237): Illuminate\\Routing\\CallableDis
/laravel/framewor! Tlluminate/Routing/Route.php(208): Illuminate\\Routing\\Route->runC
laravel/framework/src/I1luminate/Routing/Router. php(7" T1luminate\\Routing\\Route->run
home, ‘'vendor/laravel/framework/ /Pipeline.php(141): Illuminate\\Routing\\Router-
home/forge/default/vendor/laravel/framework/sr outing/Middlewa Tlluminat
forge/default, o
/framework/src/I1luninate/Foundation/Http/Middl. Veri fyCsrfToken.php(78): I1lu
/framewor! Tlluminate/Pipeline/Pipeline.php(180): Illuminate\\Foundation\\Http
default /laravel/framework/src/I1luninate/View/Middleware/ShareErrorsFromSession.php(49): Illumina
default/vendor/laravel/framework Tlluminate/Pipeline/Pipeline.php(180): Illuminate\\View\\Middleware
default, r/laravel/framework Tllumina Middleware/StartSession.php(121): Illuminate\\Pi
ndor/1aravel/framework/src/I1luminate/Session/Middleware/StartSession.php(64): Illuminate
vendor/laravel/framework/src/I1lunina php(180): Illuminate\\Session\\Midd
ndor/1aravel/framework/src/I1luminate/Coo ‘AddQueuedCookiesToResponse. php(37)
ndor/1aravel/framework/src/I1luminate/Pipeline/Pipeline.php(180): Illuminate\\Cookie\\Middlewc
vendor/1aravel/framewor| T1luminate/Cookie/MiddLeware/EncryptCookies. php(i Tlluminate\\P
/home/ f ndor/1aravel/framework/src/I1luminate/Pipeline/Pipeline.php(180): Illuminate\\Cookie\\Middlewa
home; vendor/laravel/framewor ne. Tlluminate\\Pipeline\\Pipeli
9 /home/forge/d ramewor uter Pipeline-

untitled 82.png
laravel.com;

FORGE B servers Sites

Circles (%) Recipes [Docs [m] @ Flavio

< Backto floral-surf Server ID Site ID User ® Deploying

default © SelfHelp v Edit Files v

Public IP Private IP Region

Al
- Site Environment

Deployments

Below you may edit the . env file for your application, which is the default environment file that is loaded by Laravel applications. If the

application is uninstalled, the environment file will also be removed.

Commands

Packages

Notifications

IVER=log

ER=file
ISK=local

ECTION=syNC

Queue ER=File
FETIME=120

ssL A 1-127.0.0.1

Security

Redirects

Logs

Meta

Reload

untitled 81.png
DB_CONNECTION=sqlite]
#DB_CONNECTION=pgsql
#DB_HOST=127.0.0.1

#DB_PORT=5432

#DB_DATABASE=1aravel
#DB_USERNAME=forge
#DB_PASSWORD="nzSEhUZPOOTqTohy YHur"

untitled 84.png
F default floral-surf | Laravel F

@ forge.laravel.com/server

FORGE B servers Sites (2) circles) Recipes 3 Docs Q e Flavio

< Back to floral-surf Server ID Site ID User Active

default Self Help v [EditFiles v

Public IP Private IP Region

Deployment

Deployments Quick deploy allows you to easily deploy your projects when you push to source control. When you push to this application’s deployment branch,

Forge will pull your latest code from source control and execute your deployment script.
Commands

View Latest Deployment Log
Packages
Notifications

Deploy Script

Environment

Queue home/forge/default

git pull origin SFORGE_SIT
SSh no-interaction --prefer-dist --optimize-autoloader
Security

do -S service SFORGE_PHP_FPM reload) 9>/tmp/fpmlock
Redirects [- artisan
SFORGE_PHP g force

Logs

npm install
Meta npm run build

Make . env variables available to deploy script

untitled 83.png
®© 0 & defaultifloralsurf Laravel Fo x|+

< C @ forge.laravel.com/servers/681352]sites/1979485/deployments

Removing laravel/pint (v1.10.0)

FORGE Removing laravel/breeze (v1.21.0) (=] @ Flavio
Removing hamcrest/hamcrest-php (v2.0.1)
Removing filp/whoops (2.15.2)

< Back tofloral-surf Removing fakerphp/faker (v1.21.0) . o
0%
35%
67%
default e
100%
Public IP Generating optimized autoload files
> Illuninate\Foundat ion\ComposerScripts: : postAutoloadDump
> @php artisan package:discover —-ansi
App
INFO Discovering packages. <
laravel/sanctun
NS laravel/tinker
nesbot/carbon
Packages nunomaduro/termwind
Notifications
51 packages you are using are looking for funding. Finished
B Use the *composer fund' command to find out more!
Restarting FPM.
Deploying the nain branch
Queue
INFO Preparing database.
ssL
Creating migration table
Security
R INFO Running migrations.
iz 2014_10_12_000000_create_users_table .
2014_10_12_100000_create_password_reset_tokens_table
Meta 2019_08_19_000000_create_failed_jobs_table ..

2019_12_14_000001_create_personal_access_tokens_table .
2023_05_12_164831_create_dogs_table .

Close

untitled 75.png
default | floral-surf | Laravel Fo X floral-surf | Laravel Forge

[Wforge.laravel.com/servers/681352/sites/1979485/application|

FORGE Servers @ sites (2) circles [2) Recipes B Docs 2 G Flavio

< Back to floral-surf Server ID Site ID User ® Ready

default (@ SelfHelp v [EditFiles v & Deploy Now

Public IP Private IP Region

App C e
Install Application

Commands

Environment 0 Git Repository @ WordPress g phpMyAdmin
Queue

ssL

Security

Redirects

Logs

Meta

untitled 74.png
209.38.237.58 x|+

209.38.237.58

FLORAL-SURF (209.38.237.58) DEFAULT

FORGE

We've finished preparing your site for you. Here are the next steps:

+ Install your project +/ Setup your domain + Configure your DNS records
Install the project that contains your Rename the site's domain to the domain you Configure the DNS records for this site at
application's code. plan to actually use. your domain registrar.
Install a project -> Update the site's domain >
Documentation Video Tutorials
Forge has wonderful documentation. Whether you're new or have previous aracasts has a comprehensive and free video course on Forge. Feel free to
experience, we recommend reading all of the documentation from beginning to review this course if you are new to Laravel Forge and want a video overview of
end its features
Explore the documentation —> Watch videos >
SSL Certificates Circles

Forge supports installing

stom certificates and using LetsEncrypt to generate The Forge circles feature allow you to collaborate with team members. You can

free certificates for your site. Of course, Forge will automatically renew your create as many circles as you would like and add as many team members as

LetsEncrypt certificates. needed to each ci

Install SSL > Share your server with your teammates >

rvers/681352/sites/1979485

untitled 76.png
default | floral-surf | Laravel Fo X

& forge.laravel.com

floral-surf | Laravel Forge

FORGE

< Back to floral-surf

default

Public IP

App
Commands
Environment
Queue

ssL
Security
Redirects
Logs

Meta

53 servers @ sites (@) circles 2 Recipes B Docs] ’ Flavio
Server ID Site ID User ® Ready
(@) SelfHelp v [EditFiles v & Deploy Now

Private IP Region

Install Repository

Provider

©) citHup Q) Custom
additio ce control providers in your Account sattings.
Repository
Branch

e .

Install Composer Dependencies

Generate Deploy Key ©

Install Repository [(eUtN]

untitled 87.png
Laravel Framework 10.10.

Usage:
command [options] [argi

Options:

-h, —help
for the list command

-q, ——quiet

-V, —version
—ansi|—no-ansi
——no-interaction
——env [=ENV]
-v|w|vwv, —verbose
output and 3 for debug

-n,

o

Available commands:
about
clear—compiled
completion
db
docs
down
env
help
inspire
list
migrate
optimize
serve
test
tinker
up

auth
auth:clear-resets
breeze
breeze:install
cache
cache:clear
cache: forget
cache:prune-stale-tags
cache:table
channel
channel: list
config
config:cache
config:clear
db
db:monitor
db:seed
db:show
db:table
db:wipe
env
env:decrypt
enviencrypt
event

~/djsecond

second git:(main) php artisan

1

uments]

Display help for the given command. When no command is given display help

Do not output any message

Display this application version

Force (or disable ——no-ansi) ANSI output

Do not ask any interactive question

The environment the command should run under

Increase the verbosity of messages: 1 for normal output, 2 for more verbos

Display basic information about your application
Remove the compiled class file

Dump the shell completion script

Start a new database CLI session

Access the Laravel documentation

Put the application into maintenance / demo mode
Display the current framework environment
Display help for a command

Display an inspiring quote

List commands

Run the database migrations

Cache the framework bootstrap files

Serve the application on the PHP development server
Run the application tests

Interact with your application

Bring the application out of maintenance mode

Flush expired password reset tokens
Install the Breeze controllers and resources

Flush the application cache

Remove an item from the cache

Prune stale cache tags from the cache (Redis only)
Create a migration for the cache database table

List all registered private broadcast channels

Create a cache file for faster configuration loading
Remove the configuration cache file

Monitor the number of connections on the specified database
Seed the database with records

Display information about the given database

Display information about the given database table

Drop all tables, views, and types

Decrypt an environment file
Encrypt an environment file

untitled 89.png
-+ second git:(main) php artisan app:my-command
test!
-+ second git:(main) I

untitled 88.png
-
[X Re! ~/d/second npm run dev ~/d/second

-» second git:(main) php artisan optimize -h
Description:
Cache the framework bootstrap files

IEET[H
optimize
Options:
-h, —help Display help for the given command. When no command
is given display help for the list command
-q, ——quiet Do not output any message
-V, ——version Display this application version

——ansi|--no-ansi Force (or disable -—no-ansi) ANSI output
-n, ——no-interaction Do not ask any interactive question
——env [=ENV] The environment the command should run under
-v|vv|vvv, ——verbose Increase the verbosity of messages: 1 for normal ou
tput, 2 for more verbose output and 3 for debug
» second git:(main) [

untitled 8.png
B
L X

/O EXPLORER

' OPEN EDITORS
X ® welcome.blade.ph...

v FIRST DEBELA
@ > app

> bootstrap

> config

> database

> public

 resources

> css

> s

v views

[welcome.biade.php |

> routes

> storage

> tests

> vendor
1 .editorconfig
& env

$.env.example

.gitattributes
.gitignore

£ artisan
{} composer.json
{} composer.lock
{} package.json
5 phpunit.xml
@© README.md
Js vite.config.js

{% > TIMELINE

- ®oA0

« > O first DB 08
™ welcome.blade.php X m -
resources > views > # welcome.blade.php

1 <!DOCTYPE html>

2 <html lang="{{ str_replace('_', '-', app()->getLocale()) }}">

3 <head>

4 <meta charset="utf-8">

5 <meta name="viewport" content="width=device-width, initial-scale=1">

6

7 <title>Laravel</title>

8

9 <!-- Fonts -->
10 <link rel="preconnect" href="https://fonts.bunny.net">
11 <link href="https://fonts.bunny.net/css?family=figtree:400,600&display=
12
13 <!-- Styles -->
14 <style>
15 /* ! tailwindcss v3.2.4 | MIT License | https://tailwindcss.com */*
16 </style>

17 </head>

18 <body class="antialiased">

19 <div class="relative sm:flex sm:justify-center sm:items-center min-h-sc
20 @if (Route::has('login'))

21 <div class="sm:fixed sm:top-@ sm:right-0 p-6 text-right z-10">
22 @auth

23 <a href="{{ url('/home') }}" class="font-semibold text-
24 @else

25 <a href="{{ route('login') }}" class="font-semibold tex
26

27 @if (Route::has('register'))

28 <a href="{{ route('register') }}" class="ml-4 font-
29 @endif

30 @endauth

31 </div>

32 @endif

33

Ln1,Col1 Spaces:4 UTF-8 LF PHP QPrettier & (2

untitled 86.png
@ 209.38.237.58 X 4+

C A NotSecure | 209.38.237.. h % M

Dashboard
Dogs
Roger Delete
Syd Delete
Add a new dog

Name Submit

untitled 85.png
209.38.237.58 X

A Not Secure | 209.38.237.58

Login Register
Dogs

No dogs yet

untitled 19.png
EXPLORER

v OPEN EDITORS
X ® 2023_05_11_080724_initial_table_creatio...
\ FIRST
> app
> bootstrap
> config
v database
> factories
 migrations
* 2014_10_12_000000_create_users_table.php

® 2014_10_12_100000_create_password_reset...

2019_08_19_000000_create_failed_jobs_ta...
™ 2019_12_14_000001_create_personal_acce:

& 2023 _05_11_080724_initial_table_creation....

> seeders
.gitignore

= database.sqlite

> public

> resources

> routes

> storage

> tests

> vendor

£+ .editorconfig

o env

$.env.example
gitattributes
gitignore

£ artisan

{} composer.json

{} composer.lock

{} package.json

S phpunit.xml

@ README.md

.{fo 8 1€ vitn nnnfin ic
- ®0AO0

TIMELINE

0 first

2023_05_11_080724_initial_table_creation.php X

database > migrations > # 2023_05_11_080724_initial_table_creation.php

<?php

use Illuminate\Database\Migrations\Migration;
use Illuminate\Database\Schema\Blueprint;
use Illuminate\Support\Facades\Schema;

return new class extends Migration

{

/**
* Run the migrations.
*/
public function up(): void

{

Schema: :create('dogs', function (Blueprint $table) {

$table->id();
$table->string('name');
$table->timestamps();

b

/**
* Reverse the migrations.
*/
public function down(): void
{
//

= 56lines Ln 14, Col 8 (161 selected) Spaces:4 UTF-8

LF PHP Q Prettier & (3

untitled 18.png
<« 0 first [1] 08
EXPLORER 2023 05_11.080724_initial_table_creation.php X
v OPEN EDITORS database > migrations > ® 2023_05_11_080724_initial_table_creation.php
ﬁ X ® 2023 05.11.080724_initial_table_creation.... 1 <?php
\ FIRST GELSO 2
@ > app 3 use Illuminate\Database\Migrations\Migration;
> bootstrap 4 use Illuminate\Database\Schema\Blueprint;
> config 5 use Illuminate\Support\Facades\Schema;
v database 6
2 faf:“’ri.es 7 return new class extends Migration
\ migrations 8 {
* 2014_10_12_000000_create_users_table.php 9 Jxk
® 2014_10_12_100000_create_password_reset... . .
N 10 * Run the migrations.
™ 2019_08_19_000000_create_failed_jobs_ta... 11 o
™ 2019_12_14_000001_create_personal_acces... . . .
 2023_05_1_080724.inital_table_creation...| (ERREE fumeiEem ()8 e
> seeders e {
.gitignore 14 /7
= database.sqlite o }
> public 16
> resources 17 o
> routes 18 * Reverse the migrations.
> storage 19 */
> tests 20 public function down(): void
> vendor 21 {
1+ .editorconfig 22 //
& env 23 }
$.env.example 24 e
.gitattributes 25
gitignore
< artisan
{} composer.json
{} composer.lock
{} package.json
S phpunit.xml
- @ README.md
X 1€ it Annfic i
“@ 5 Tmene °
- ®o0A0 Ln1,Col1 Spaces:4 UTF-8 LF PHP @ Prettier & (%

untitled 10.png
. A

L XX J < - P first D8 08
/O EXPLORER ® welcome.blade.php % web.php X m -
\/ OPEN EDITORS routes > # web.php
=5 # welcome.blade.ph... 1 <Pphp
X & web.php routes 2
@ FIRST 3 use Illuminate\Support\Facades\Route;
> app 4
> bootstrap 5 /%
> config 6 [mm e e s
» CHEEED 7 | Web Routes
> public 8 R
> resources 9 |
vrou!.es 10 | Here is where you can register web routes for your application. These
:2:::::5'“" 11 | routes are loaded by the RouteServiceProvider and all of them will
12 | be assigned to the "web" middleware group. Make something great! B
console.php
* web.php 4 I
> storage 14 Y
> tests £
S R 16 Route::get('/', function () {
& editorconfig 17 return view('welcome');
& env 18 1);
$.env.example 19
gitattributes 20 oute::get('/test', function () {
.gitignore 21 | - -return-view('welcome');
= artisan 22 });

{} composer.json
{} composer.lock
{} package.json
5 phpunit.xml
@© README.md
Js vite.config.js

% > TIMELINE

- ®0Ao0 = 3lines Ln20,Col 1 (65selected) Spaces:4 UTF-8 LF PHP QPretier A& (3

untitled 9.png
@ 127.0.0.1:8000

2 ® 127.0.0.1:8000

test

untitled 12.png
@ 127.0.0.1:8000/test

® 127.0.0.

new view!

untitled 11.png
@ 127.0.0.1:8000/test

® 127.0.0.

untitled 14.png
@ 127.0.0.1:8000/hello X +

C © 127.0.01:8000/helc (h ¥ @ @, 6@ »=0€¢C

untitled 13.png
r
00 @ Not Found X +

& C ® 127.0.0.1:8000/hello M K e B 2, @ e @< » =0 %

404 NOT FOUND

untitled 16.png
@ 127.0.0.1:8000/test/fjoe

C ® 127.0.0.1:8000/test/j % w £ # O @ mncognito

Hello joe

untitled 15.png
@ 127.0.0.1:8000/test/flavio

C ® 127.0.0.1:8000/test/flav o= BoR 0O © Incognito
Hello flavio

untitled 17.png
-» first php artisan make:migration initial_table_creation

ENEON Migration [database/migrations/2023_05_11_080724_initial_table
_creation.php] created successfully.

»> first I

untitled 27.png
[X) @ View [dogs] not found. X +

& > C ® 127.0.0.1:8000/dogs @ % © @ & O @ incogito
= STACK [l CONTEXT ¢ SHARE 2 pocs
InvalidArgumentException PHP 8.2.5 ©10.10.0

View [dogs] not found.

dogs was not found.

Did you mean test?

 Expand vendor frames

4 vendor frames v

untitled 29.png
-
(X X O]

Items Queries History

=
Q =
=

failed_jobs

migrations
password_reset_tokens
personal_access_tokens
sglite_sequence

users

A 8 sa Qa0] 1 »
id name created_at updated_at
1 Roger 2023-05-1109:27:20 2023-05-11 09:27:20
2 Syd 2023-05-11 09:29:52 2023-05-11 09:29:52
3 Botolo 2023-05-11 09:29:57 2023-05-11 09:29:57
4 Zoe 2023-05-1109:30:12 2023-05-11 09:30:12
Data | Structure | + Rowl-4 of 4 fo@elumns Filters LG - T

untitled 28.png
@ 127.0.0.1:8000/dogs

C ©® 127.0.01 L N | @ Incognito

Roger Syd Botolo Zoe

untitled 21.png
e00 ® 5 O o |EEmETGERGEIIIN £ ¢ o w0 =

Items Queries History Name dogs Primary id Q search for column...
. =
Q search for item = column_name data_type is_nullable column_default foreign_key
(Bdoss NTEGER <] NO o : 5
failed_jobs o . . .
e name varchar S NO S 8
password_reset_tokens created_at datetime S YES S)
personal_access_tokens updated_at datetime 3 YES > S
sqlite_sequence
users

index_name is_unique column_name

Data + Index + Column Triggers
[Structure + Index -+ Column [omto

untitled 20.png
r. [X J ~/dffirst
-» first php artisan migrate
EREG) Preparing database.
Creating migration table DONE

ENEGN Running migrations.

2014_10_12_000000_create_users_table DONE

2014_10_12_100000_create_password_reset_tokens_table DONE

2019_08_19_000000_create_failed_jobs_table DONE

2019_12_14 000001_create_personal_access_tokens_table DONE

2023_05_11_080724_initial_table_creation DONE
»> first I

71x18

untitled 23.png
@

EXPLORER

~ OPEN EDITORS

X ® Dog.php app/Models

“ FIRST

v app

> Console

> Exceptions
> Http

~ Models

L first

® Dog.php X

app > Models > # Dog.php

1

2w N

n

“ Dog.php

® User.php

> Providers
bootstrap
config
database
public
resources
routes

o > TIMELINE
= ®0A0

© ® N o

10

12

<?php
namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;
use Illuminate\Database\Eloquent\Model;

class Dog extends Model

{

use HasFactory;

Ln1,Col1 Spaces:4 UTF-8 LF PHP

Q Prettier & (2

untitled 22.png
-
o000 ~/dffirst
-» first php artisan make:model Dog
IENEGN Model [app/Models/Dog.php] created successfully.

»> first I

untitled 25.png
@ Laravel

C ©® 127.0.01 E © % 0O @ Incognito

Nawe[|

untitled 24.png
EXPLORER

v OPEN EDITORS

X ® web.php routes

Vv FIRST

@

v app

> Console

> Exceptions

v Http

v Controllers
& Controller.php
NewDogFormController.php
> Middleware

& Kernel.php

> Models

> Providers
bootstrap

config

database

public

resources

MRV RV NV %

v routes

® api.php

® channels.php
® console.php
= web.php

> storage

> tests

o > TIMELINE
- ®0Ao0

L first

= web.php X

routes > ® web.php

19
20
21
22
23
24
25
26
27
28
29
30

= 11 lines

route::get('/newdog', function () {

return-view('newdog'

3

Route::post('/newdog’,

)5

'App\Http\Controllers\NewDogFormController@ewDog')

->name('dog.new');

Route::get('/dogs', function () {

return-view('dogs');
})->name('dogs');

Ln 20, Col 1 (242 selected)

Spaces: 4 UTF-8 LF PHP @ Prettier

A

&4

4

untitled 26.png
-
(X X O]

Items Queries History

=
Q =
=

failed_jobs

migrations
password_reset_tokens
personal_access_tokens
sglite_sequence

users

id

6 B8 s
name

1 Roger

BEIE] Structure

QL Q
created_at

2023-05-11 09:27:20

lar

updated_at

2023-05-11 09:27:20

»

+ Row 1-1 of 1 @nlumns

Filters

<

screenshot_2022-11-27_at_18.33.19.png
(@) 8 laravel.nsn9twSvps.replcojnewdog & © (0 +

untitled 38.png
@ 127.0.0.1:8000 X +

C ©® 127.0.041 @ % & O @ mncognito (2)

Dogs

Roger
Syd

Perfect

Add a new dog

untitled 37.png
@ 127.0.0.1:8000/newdog X +

& C ©® 127.0.01 I S | @ Incognito

Name \Sm

untitled 40.png
-
o000 ~/d/second

npm run dev ~/d/first

-» second php artisan breeze:install
Which stack would you like to install?
[DUEER coccocooonoono0o0000006000005060000050000000000060000000000000000600000000¢0 0
L= [o T Y 1
VUE .ocsssassnnsansansanssnsssassansansannansasssassaansansannaasssssnanannnans 2
ET%EL orno00000000000000000000500000006000000000500006000000000000009000600000000 3

Would you like to install dark mode support? (yes/no) [nol

>

Would you prefer Pest tests instead of PHPUnit? (yes/no) [nol

>

ENEON Installing and building Node dependencies.

added 113 packages, and audited 114 packages in 18s

found 0 vulnerabilities

> build
> vite build

vite v4.3.5 building for production...

v 49 modules transformed.
public/build/manifest.json 0.26 kB
public/build/assets/app-bel78382.css 29.88 kB
public/build/assets/app-e7c8c463.js 69.13 kB
v built in 597ms

gzip:
gzip:
gzip:

ENEDN Breeze scaffolding installed successfully.

- second [

0.13 kB
5.79 kB
25.73 kB

85x36

untitled 39.png
& 127.0.0.1:8000

» 0O @ Incognito (2)

Dogs

Roger
Syd

Perfect

Add a new dog

Name

Delete

Delete

Delete

untitled 31.png
@ 127.0.0.1:8000

C ©® 127.0.01 E © % 0O @ Incognito

Roger Syd Botolo Zo:

untitled 30.png
v resources
> css
> js
v views
> errors
dogs.blade.php
newdog.blade.php
& test.blade.php
welcome.blade.php

untitled 33.png
-
[X Re! php artisan serve ~/d/first npm run dev ~/d/first

VITE v4.3.5 ready in 344 ms

-» Local: http://localhost:5173/
-» Network: use --host to expose
-» press h to show help

LARAVEL v10.10.0 plugin v0.7.6

» APP_URL: http://localhost

71x17

untitled 32.png
@ 127.0.0.1:8000

C ©® 127.0.01 L N | @ Incognito

Dogs

e Roger
e Syd
¢ Botolo
e Z0e

untitled 35.png
@ 127.0.0.1:8000

C ® 127.0.01

» 0O @ Incognito

Dogs

Roger
Syd
Botolo
Zoe

untitled 34.png
@ 127.0.0.1:8000

C ® 127.0.0.1
Dogs
Roger
Syd
Botolo
Zoe

» 0O @ Incognito

untitled 36.png
@ 127.0.0.1:8000

&< S5 C O 127.0.01 L N | @Incognito

Dogs

Roger

Syd

Botolo

Zoe

Name Submit

