

Preface
This book aims to be an introduction to HTMX, a fantastic library that lets you create
interactive Web Applications.

If you’re unfamiliar with JavaScript, before reading this book I highly recommend reading my
JavaScript Beginner’s Handbook.

This book was published in late 2024.

Legal
Flavio Copes, 2024. All rights reserved.

Downloaded from flaviocopes.com.

No part of this book may be reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher.

The information in this book is for educational and informational purposes only and is not
intended as legal, financial, or other professional advice. The author and publisher make no
representations as to the accuracy, completeness, suitability, or validity of any information in
this book and will not be liable for any errors, omissions, or delays in this information or any
losses, injuries, or damages arising from its use.

This book is provided free of charge to the newsletter subscribers of Flavio Copes. It is for
personal use only. Redistribution, resale, or any commercial use of this book or any portion
of it is strictly prohibited without the prior written permission of the author.

If you wish to share a portion of this book, please provide proper attribution by crediting
Flavio Copes and including a link to flaviocopes.com.

Introduction
HTMX is an absolutely brilliant frontend library specialized in working with HTTP requests,
sending data to a server, updating the UI based on some action, and so on.

It's not meant to be a UI library like Alpine, which is more oriented at adding interactivity to a
page. HTMX is still a frontend library, but it's more data-oriented, and its goal is to fully
replace a UI library like React or Angular, and instead use the full power of HTML (enhanced
by HTMX) and hypermedia.

Sending HTML over the wire.

In this handbook I'll explain the basic building blocks of HTMX and I'll show you how you can
use those handy primitives to create Web Applications with ease.

https://flaviocopes.com/books/
https://flaviocopes.com/
http://flaviocopes.com/
af://h1-1
af://h1-2
af://h1-3

I will explain the basics of htmx.

Learn more on the official website at https://htmx.org/docs and read the book Hypermedia
Systems at https://hypermedia.systems/book/contents/

Why htmx
As a backend developer, htmx might be the best thing you stumble upon, as it lets you
create quite complex experiences in your Web Application without using JavaScript.

As a frontend developer that knows and works with JavaScript or TypeScript all day long,
you might wonder why use htmx instead of React or any other client-side library that you can
use to build a UI?

The thing is this: if you're building your application on top of one of those big frameworks (be
it React, Vue, Angular, Svelte...) you are effectively building the application by using that
particular framework (or library, whatever...) rules and conventions and patterns.

You are effectively a React developer, or Vue developer.

And guess what happens when you use those frameworks, typically? There's a TON of
JavaScript running under the hood to power your application.

With htmx instead you are much closer to the Web as a platform. You stay much closer to
the HTML, to the browser, and to the client-server interaction.

You use much more native, built-in, platform APIs.

You use client-side JavaScript as a "scripting language" to build to interactive user
interfaces, as it was intended.

Why htmx? Why not. You might discover a way of building Web Applications that totally
reasons with how you think.

The core idea of htmx
The core idea of htmx is to replace the approach commonly used by modern Web
Applications these days that talk to a server using JSON (primarily) and then build the user
interface client-side.

Instead of sending JSON from the server to the client, we send HTML.

Imagine you want to get some users data to embed in a list. You ask this data to a
/api/users endpoint. It sends you this:

{

 "users": [

 { "name": "First user" },

https://htmx.org/docs
https://hypermedia.systems/book/contents/
af://h1-4
af://h1-5

Now you (the client) must render this data to the user, building the HTML (that is what the
browser can interpret) client-side.

With HTMX, you'd see a list like this coming from the server, returned as an HTML partial
(not a full HTML page, just some HTML tags):

and this reply is automatically shown on the page by htmx, you just describe where you want
to show it, and it's all automatic.

This is a simple example, but you can already see how mind-shifting htmx can be if you're
used to passing JSON around, like we've been doing for years and years.

With htmx, API endpoints are more UI-aware. They're not pure isolated data-spitting HTTP
routes. They become active parts of the application.

This was one big idea of htmx: JSON -> HTML.

Another big idea is that we can fully use all the HTTP verbs from HTML (which is otherwise
limited to GET and POST) and also send PUT, PATCH and DELETE requests.

And, we can send those requests from any HTML element, not just forms (and links, for GET
request).

Those requests can be triggered by any event we want, and we describe (using special htmx
attributes) what should happen.

We'll see this soon in practice.

One important thing to note is that htmx is backend agnostic, we can use any backend that
can render an HTML partial (basically, any backend).

Installing htmx
Installing htmx can be as simple as adding a <script> tag to an HTML page that loads
htmx from a global CDN, like this:

 { "name": "Second user" },

 { "name": "Third user" },

]

}

 First user

 Second user

af://h1-6

You can also save the htmx code locally on your website and load it from there. Or reference
https://unpkg.com/htmx.org which gives you the latest version (but adds a redirect) - if
you choose this route it's probably safer to use https://unpkg.com/htmx.org@1 to stick to
htmx 1.x in case 2.x is released with breaking changes.

In a modern site built for example with Astro you typically do this in a common layout
component, but you can start simple and add it to a simple index.html page that you then
load in the browser from your local filesystem.

You can also install htmx using npm to add it to your build system and use the import
syntax to load it:

But I think the <script> tag approach is best suited for htmx.

Doing a GET request
Consider this button:

When you click the button, any HTML returned from the GET /data HTTP request will be
put inside the element that matches the selector #data (in this example our <div
id="data"></div>).

I'll use Astro to show a simple example, create a page with

<script src="<https://unpkg.com/htmx.org@1.9.9>"></script>

npm install htmx.org

//....in your code...

import 'htmx.org'

<button hx-get="/data"

 hx-target="#data">

 Load fresh data

</button>

<div id="data"></div>

<html lang='en'>

 <head>

 <script src='<https://unpkg.com/htmx.org@1>'></script>

 </head>

 <body>

 <button

af://h1-7

Now create a src/pages/data.astro and in there add

Clicking the Load fresh data button will insert <p>test response</p> into the #data
div.

Note that all is happening without us having to write a single line of JavaScript.

htmx does all the JavaScript for us. We just describe what we want it to do. And it's pretty
flexible, so we can do a lot with it.

Swap
Using the hx-swap attribute we can tell htmx to use a specific swap "strategy".

The default is innerHTML which swaps the inner content of the selector.

But you can tell htmx to use another swap strategy with the hx-swap attribute.

For example hx-swap='outerHTML' , which swaps the element that matches the selector
too (in our example the entire <div id='data'></div> , with all its content).

This is common if from the server you return content wrapped in the div, like this:

You can use several other strategies including not doing anything with hx-swap='none'
(which is what you want to do if the request response shouldn't be swapped anywhere), or
deleting an element with hx-swap='delete'

 hx-get='/data'

 hx-target='#data'>

 Load fresh data

 </button>

 <div id='data'></div>

 </body>

</html>

export const partial = true

<p>test response</p>

<div id='data'>

 <p>test response</p>

</div>

af://h1-8

Or adding the response HTML at the top of a list included in the target with afterbegin (or
at the bottom with beforeend).

Or add the response HTML before the target element with beforebegin (or after the target
element with afterend).

This lets us do quite a lot of things.

One thing that I want to mention is "out of band swaps", because this unlocked several
opportunities in my mind.

Basically in the response we can return one or more HTML tags with the hx-swap-
oob="true" attribute that are swapped in different places in the page:

POST request
We previously saw how to use hx-get to do a GET request.

POST requests are similar, but using hx-post :

If /data returns the same data as the GET request, this works in the same way.

But conceptually POST requests are used to send data to the endpoint.

This is done using forms.

If the element issuing the POST is inside a form, or is a form, all the input fields are sent to
the endpoint as form data.

You can configure this behavior by filtering out some fields using hx-params and including
other input fields using hx-include .

Typically you have a form like this:

<div id="message" hx-swap-oob="true">

 Show this in #message

</div>

<p>Show me as normal</p>

<button hx-post="/data"

 hx-swap="innerHTML"

 hx-target="#data">

 Load fresh data

</button>

<div id="data"></div>

af://h1-9

This is equivalent to:

Both work in the same way, htmx posts to /projects the data of the form, which in this
case means the name input field value.

Note that if you use validation in a form, for example setting a field as required , the
request will not be sent if validation fails.

Server-side, for example using Astro, you can get this data using
Astro.request.formData() :

Note that you must configure Astro to be server-rendered in astro.config.mjs :

<form

 hx-post="/projects"

 hx-target="#result">

 <input name="name" />

 <button type="submit">Add</button>

</form>

<form>

 <input name="name" />

 <button

 type="submit"

 hx-post="/projects"

 hx-target="#result">

 Add

 </button>

</form>

export const partial = true

if (Astro.request.method === 'POST') {

 const formData = await Astro.request.formData()

 //this prints the form data to the console

 console.log(formData)

 //FormData { [Symbol(state)]: [{ name: 'name', value: 'my project

name' }] }

}

<p>project created</p>

Targets
We used the hx-target attribute to tell htmx where to put the response of the request.

This attribute takes a CSS selector, which is what you're likely familiar to use in CSS to
target an element, for example by id or class .

In our example we had hx-target="#result" .

That put the result of the request to the element with the id attribute equal to result

(As a reminder, the difference between id and class is that id attributes must be unique
on a page, while class can be repeated multiple times, so you have to handle that case)

This is the simplest usage of hx-target .

You can use hx-target="this" to target "this element we are defining the xh-target
attribute on".

Then we can navigate the HTML elements around or near us with:

For example in a project I used hx-target="closest li" in a list with a delete button to
delete the entire li (list item) when I clicked the delete button to delete the item.

Loading indicator
It's common to have a loading indicator show up when we're waiting for the server response.

To do that, embed an element with class htmx-indicator into the element that triggers the
request.

You can use a simple loading... text:

import { defineConfig } from 'astro/config'

// <https://astro.build/config>

export default defineConfig({

 output: 'server'

})

closest <CSS selector> to find the closest parent that matches the CSS selector
next <CSS selector> to find the closest next element that matches the CSS selector
previous <CSS selector> to find the closest previous element that matches the
CSS selector
find <CSS selector> to find the closest child that matches the CSS selector

af://h1-10
af://h1-11

Or an image:

Confirming actions, and prompts
A handy utility in htmx is hx-confirm which allows you to let the user confirm an action.

For example you have a delete button to delete an item in a list, and you don't want the user
to lose data if accidentally pressing the button.

So you add hx-confirm , adding some confirmation text:

(Notice I used some Astro templating to print the tasks list, to show you how I used this
feature).

You can also ask for some information to the user in a prompt, using hx-prompt :

<button

 hx-get='/data'

 hx-swap='innerHTML'

 hx-target='#data'>

 Load fresh data

 <p class='htmx-indicator'>loading...</p>

</button>

<button

 hx-get='/data'

 hx-swap='innerHTML'

 hx-target='#data'>

 Load fresh data

</button>

 {tasks.map(task =>

 Task: {task.name}

 <button

 hx-confirm="Are you sure?"

 hx-target="closest li"

 hx-swap="outerHTML"

 hx-delete={`/task/${task.id}`}>

 Delete

 </button>

)}

af://h1-12

This information is sent in the HX-Prompt HTTP request header.

Triggers
Requests can be triggered in different ways.

The default is click , but you can fire a requests upon any browser-generated event, like
mouseenter or keyup or even a specific keypress.

You do that using hx-trigger :

It doesn't have to be an event.

htmx offers other ways to fire events, like polling. Use every 5s to fire a GET request every
5 seconds: hx-trigger='every 5s'

Or use load to load just once after 10 seconds: hx-trigger='load delay:10s'

Request headers
It's important to note that in any request sent using htmx we have access, server-side, to a
number of HTTP headers we can use.

We've got quite a few useful ones:

Remember, target = the element we'll print the response to. trigger = the element that
triggered the request.

<button hx-delete="/project" hx-prompt="Enter the project name to

confirm">

 Delete project

</button>

<button

 hx-get='/data'

 hx-swap='innerHTML'

 hx-target='#data'

 hx-trigger='mouseenter'>

 Load fresh data

</button>

XH-Current-URL the URL the request comes from
XH-Target the id of the target element
XH-Trigger the id of the triggered element
XH-Trigger-Name the name of the triggered element

af://h1-13
af://h1-14

We've talked about HX-Prompt already, if you have a prompt in the tag, you get what the
user wrote in the prompt in this header.

See the full list of request headers: https://htmx.org/docs/#request-headers

Response headers
A very cool thing about htmx is that we can send a response back from the server with some
special headers that then trigger client-side behavior.

Like redirecting to a specific URL determined by the server after the request is received.

This helps us create applications where client and server are tightly coupled (i.e. the
decision of what happens is determined with server-side logic).

For example I used the HX-Redirect response header, set it to / , and client-side once the
request was successfully completed the user was redirected to / .

Here's the code I used to do this:

After doing the HTTP request, htmx automatically redirects to that URL, client-side.

Other interesting ones are:

A full list of other response headers you can set is here: https://htmx.org/docs/#response-
headers

if (Astro.request.method === 'DELETE') {

 await deleteProject(id) //some logic

 **return new Response(null, {

 status: 204,

 statusText: 'No Content',

 headers: {

 'HX-Redirect': '/',

 },

 })**

}

HX-Push-Url to push a new URL in the browser history (equivalent to client-side
calling History API's pushState)
HX-Refresh to trigger a client-side full refresh of the page after the response is
received
HX-Trigger to trigger a client-side event right after the response is received
HX-Retarget to change the hx-target of the response to a different element on the
page

https://htmx.org/docs/#request-headers
https://htmx.org/docs/#response-headers
af://h1-15

Events
I had the need to listen for a particular htmx event to happen, and add some custom
JavaScript code.

htmx allows us to do this using plain DOM events.

In this example I redirect to the / route after the request that was triggered by the HTML
element with id equal to button-delete-project :

The detail object attached to the event provides a lot of useful information.

You have a wide variety of events to listen to, including for example:

You should check https://htmx.org/events/ for the full list and documentation.

<script>

 document.addEventListener('htmx:afterRequest', function (event) {

 if ((event as CustomEvent).detail.target.id === 'button-delete-

project') {

 window.location.href = '/'

 }

 })

</script>

htmx:beforeRequest fired before an HTTP request is issued
htmx:beforeSwap fired before a DOM swap
htmx:timeout fired when a request timeout occurs

https://htmx.org/events/#details-2
https://htmx.org/events/
af://h1-16

	Preface
	Legal
	Introduction
	Why htmx
	The core idea of htmx
	Installing htmx
	Doing a GET request
	Swap
	POST request
	Targets
	Loading indicator
	Confirming actions, and prompts
	Triggers
	Request headers
	Response headers
	Events

