

1

Table of Contents
Preface

The Express Handbook

Conclusion

2

Preface
The Express Handbook follows the 80/20 rule: learn in 20% of the time the
80% of a topic.

In particular, the goal is to get you up to speed quickly with Express.

This book is written by Flavio. I publish programming tutorials on my
blog flaviocopes.com and I organize a yearly bootcamp at bootcamp.dev.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://bootcamp.dev/
https://twitter.com/flaviocopes

3

The Express Handbook
1. Introduction to Express
2. Installation
3. The first "Hello, World" example
4. Request parameters
5. Send a response to the client

5.1 Use end() to send an empty response
5.2 Set the HTTP response status

6. Send a JSON response
7. Manage cookies
8. Work with HTTP headers

8.1 Access HTTP headers values from a request
8.2 Change any HTTP header value for a response

9. Handling redirects
10. Routing

10.1 Named parameters
10.2 Use a regular expression to match a path

11. Templates
12. Middleware
13. Serving Static Assets with Express
14. Send files to the client
15. Sessions
16. Validating input
17. Sanitizing input
18. Handling forms
19. Handling file uploads in forms

1. Introduction to Express
Express is a Web Framework built upon Node.js.

Node.js is an amazing tool for building networking services and applications.

4

Express builds on top of its features to provide easy to use functionality that
satisfies the needs of the Web Server use-case. It's Open Source, free, easy to
extend and very performant.

There are also lots and lots of pre-built packages you can just drop in and use
to do all kinds of things.

2. Installation
You can install Express into any project with npm.

If you're in an empty folder, first create a new Node.js project with

npm init -y

then run

npm install express

to install Express into the project.

3. The first "Hello, World" example
The first example we're going to create is a simple Express Web Server.

Copy this code:

const express = require('express')
const app = express()

app.get('/', (req, res) => res.send('Hello World!'))
app.listen(3000, () => console.log('Server ready'))

Save this to an index.js file in your project root folder, and start the server
using

5

node index.js

You can open the browser to port 3000 on localhost and you should see the
 Hello World! message.

Those 4 lines of code do a lot behind the scenes.

First, we import the express package to the express value.

We instantiate an application by calling the express() method.

Once we have the application object, we tell it to listen for GET requests on
the / path, using the get() method.

There is a method for every HTTP verb: get() , post() , put() ,
 delete() , patch() :

app.get('/', (req, res) => { /* */ })
app.post('/', (req, res) => { /* */ })
app.put('/', (req, res) => { /* */ })
app.delete('/', (req, res) => { /* */ })
app.patch('/', (req, res) => { /* */ })

Those methods accept a callback function - which is called when a request is
started - and we need to handle it.

We pass in an arrow function:

(req, res) => res.send('Hello World!')

Express sends us two objects in this callback, which we called req and
 res , they represent the Request and the Response objects.

Both are standards and you can read more on them here:

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response

https://developer.mozilla.org/en-US/docs/Web/API/Request
https://developer.mozilla.org/en-US/docs/Web/API/Response

6

Request is the HTTP request. It gives us all the request information,
including the request parameters, the headers, the body of the request, and
more.

Response is the HTTP response object that we'll send to the client.

What we do in this callback is to send the 'Hello World!' string to the client,
using the Response.send() method.

This method sets that string as the body, and it closes the connection.

The last line of the example actually starts the server, and tells it to listen on
port 3000 . We pass in a callback that is called when the server is ready to
accept new requests.

4. Request parameters
I mentioned how the Request object holds all the HTTP request information.

These are the main properties you'll likely use:

7

Property Description

.app holds a reference to the Express app object

.baseUrl the base path on which the app responds

.body
contains the data submitted in the request body (must
be parsed and populated manually before you can
access it)

.cookies contains the cookies sent by the request (needs the
 cookie-parser middleware)

.hostname the hostname as defined in the Host HTTP header
value

.ip the client IP

.method the HTTP method used

.params the route named parameters

.path the URL path

.protocol the request protocol

.query an object containing all the query strings used in the
request

.secure true if the request is secure (uses HTTPS)

.signedCookies contains the signed cookies sent by the request (needs
the cookie-parser middleware)

.xhr true if the request is an XMLHttpRequest

5. Send a response to the client
In the Hello World example we used the send() method of the Response
object to send a simple string as a response, and to close the connection:

(req, res) => res.send('Hello World!')

If you pass in a string, it sets the Content-Type header to text/html .

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Host
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/xhr

8

if you pass in an object or an array, it sets the application/json Content-
Type header, and parses that parameter into JSON.

After this, send() closes the connection.

 send() automatically sets the Content-Length HTTP response header,
unlike end() which requires you to do that.

5.1 Use end() to send an empty response

An alternative way to send the response, without any body, it's by using the
 Response.end() method:

res.end()

5.2 Set the HTTP response status

Use the status() method on the response object:

res.status(404).end()

or

res.status(404).send('File not found')

 sendStatus() is a shortcut:

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/json

9

res.sendStatus(200)
// === res.status(200).send('OK')

res.sendStatus(403)
// === res.status(403).send('Forbidden')

res.sendStatus(404)
// === res.status(404).send('Not Found')

res.sendStatus(500)
// === res.status(500).send('Internal Server Error')

6. Send a JSON response
When you listen for connections on a route in Express, the callback function
will be invoked on every network call with a Request object instance and a
Response object instance.

Example:

app.get('/', (req, res) => res.send('Hello World!'))

Here we used the Response.send() method, which accepts any string.

You can send JSON to the client by using Response.json() , a useful method.

It accepts an object or array, and converts it to JSON before sending it:

res.json({ username: 'Flavio' })

7. Manage cookies
Use the Response.cookie() method to manipulate your cookies.

Examples:

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/json

10

res.cookie('username', 'Flavio')

This method accepts a third parameter, which contains various options:

The most useful parameters you can set are:

Value Description

 domain The cookie domain name

 expires Set the cookie expiration date. If missing, or 0, the cookie is
a session cookie

 httpOnly Set the cookie to be accessible only by the web server. See
HttpOnly

 maxAge Set the expiry time relative to the current time, expressed in
milliseconds

 path The cookie path. Defaults to '/'

 secure Marks the cookie HTTPS only

 signed Set the cookie to be signed

 sameSite Value of SameSite

A cookie can be cleared with:

res.clearCookie('username')

8. Work with HTTP headers

8.1 Access HTTP headers values from a
request

You can access all the HTTP headers using the Request.headers property:

res.cookie('username', 'Flavio', { domain: '.flaviocopes.com', path: '/adm

res.cookie('username', 'Flavio', { expires: new Date(Date.now() + 900000),

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#set-a-cookie-domain
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#set-a-cookie-expiration-date
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#httponly
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#set-a-cookie-path
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#secure
file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/cookies#samesite

11

app.get('/', (req, res) => {
 console.log(req.headers)
})

Use the Request.header() method to access one individual request header's
value:

app.get('/', (req, res) => {
 req.header('User-Agent')
})

8.2 Change any HTTP header value for a
response

You can change any HTTP header value using Response.set() :

res.set('Content-Type', 'text/html')

There is a shortcut for the Content-Type header, however:

res.type('.html')
// => 'text/html'

res.type('html')
// => 'text/html'

res.type('json')
// => 'application/json'

res.type('application/json')
// => 'application/json'

res.type('png')
// => image/png:

9. Handling redirects

12

Redirects are common in Web Development. You can create a redirect using
the Response.redirect() method:

res.redirect('/go-there')

This creates a 302 redirect.

A 301 redirect is made in this way:

res.redirect(301, '/go-there')

You can specify an absolute path (/go-there), an absolute url
(https://anothersite.com), a relative path (go-there) or use the .. to go
back one level:

res.redirect('../go-there')
res.redirect('..')

You can also redirect back to the Referer HTTP header value (defaulting to
 / if not set) using

res.redirect('back')

10. Routing
Routing is the process of determining what should happen when a URL is
called, or also which parts of the application should handle a specific
incoming request.

In the Hello World example we used this code

app.get('/', (req, res) => { /* */ })

13

This creates a route that maps accessing the root domain URL / using the
HTTP GET method to the response we want to provide.

10.1 Named parameters

What if we want to listen for custom requests, maybe we want to create a
service that accepts a string, and returns that uppercase, and we don't want
the parameter to be sent as a query string, but part of the URL. We use
named parameters:

If we send a request to /uppercase/test , we'll get TEST in the body of the
response.

You can use multiple named parameters in the same URL, and they will all be
stored in req.params .

10.2 Use a regular expression to match a path

You can use regular expressions to match multiple paths with one statement:

app.get(/post/, (req, res) => { /* */ })

will match /post , /post/first , /thepost , /posting/something , and so on.

11. Templates
Express is capable of handling server-side template engines.

Template engines allow us to add data to a view, and generate HTML
dynamically.

Express uses Jade as the default. Jade is the old version of Pug, specifically
Pug 1.0.

app.get('/uppercase/:theValue', (req, res) => res.send(req.params.theValue

https://flaviocopes.com/javascript-regular-expressions/

14

The name was changed from Jade to Pug due to a trademark issue in
2016, when the project released version 2. You can still use Jade, aka Pug
1.0, but going forward, it's best to use Pug 2.0

Although the last version of Jade is 3 years old (at the time of writing,
summer 2018), it's still the default in Express for backward compatibility
reasons.

In any new project, you should use Pug or another engine of your choice. The
official site of Pug is https://pugjs.org/.

You can use many different template engines, including Pug, Handlebars,
Mustache, EJS and more.

To use Pug we must first install it:

npm install pug

and when initializing the Express app, we need to set it:

const express = require('express')
const app = express()
app.set('view engine', 'pug')

We can now start writing our templates in .pug files.

Create an about view:

app.get('/about', (req, res) => {
 res.render('about')
})

and the template in views/about.pug :

p Hello from Flavio

This template will create a p tag with the content Hello from Flavio .

https://pugjs.org/

15

You can interpolate a variable using

app.get('/about', (req, res) => {
 res.render('about', { name: 'Flavio' })
})

p Hello from #{name}

Look at the Pug guide for more information on how to use Pug.

This online converter from HTML to Pug will be a great help: https://html-
to-pug.com/

12. Middleware
A middleware is a function that hooks into the routing process, performing
an arbitrary operation at some point in the chain (depending on what we
want it to do).

It's commonly used to edit the request or response objects, or terminate the
request before it reaches the route handler code.

Middleware is added to the execution stack like so:

app.use((req, res, next) => { /* */ })

This is similar to defining a route, but in addition to the Request and
Response objects instances, we also have a reference to the next middleware
function, which we assign to the variable next .

We always call next() at the end of our middleware function, in order to
pass the execution to the next handler. That is unless we want to prematurely
end the response and send it back to the client.

You typically use pre-made middleware, in the form of npm packages. A big
list of the available ones can be found here.

https://flaviocopes.com/pug
https://html-to-pug.com/
https://expressjs.com/en/resources/middleware.html

16

One example is cookie-parser , which is used to parse cookies into the
 req.cookies object. You can install it using npm install cookie-parser and
you use it thusly:

const express = require('express')
const app = express()
const cookieParser = require('cookie-parser')

app.get('/', (req, res) => res.send('Hello World!'))

app.use(cookieParser())
app.listen(3000, () => console.log('Server ready'))

We can also set a middleware function to run for specific routes only (not for
all), by using it as the second parameter of the route definition:

const myMiddleware = (req, res, next) => {
 /* ... */
 next()
}

app.get('/', myMiddleware, (req, res) => res.send('Hello World!'))

If you need to store data that's generated in a middleware to pass it down to
subsequent middleware functions, or to the request handler, you can use the
 Request.locals object. It will attach that data to the current request:

req.locals.name = 'Flavio'

13. Serving Static Assets with
Express
It's common to have images, CSS and more in a public subfolder, and
expose them to the root level:

17

const express = require('express')
const app = express()

app.use(express.static('public'))

/* ... */

app.listen(3000, () => console.log('Server ready'))

If you have an index.html file in public/ , that will be served if you now hit
the root domain URL (http://localhost:3000)

14. Send files to the client
Express provides a handy method to transfer a file as attachment:
 Response.download() .

Once a user hits a route that sends a file using this method, browsers will
prompt the user for download.

The Response.download() method allows you to send a file attached to the
request, and the browser instead of showing it in the page, it will save it to
disk.

app.get('/', (req, res) => res.download('./file.pdf'))

In the context of an app:

const express = require('express')
const app = express()

app.get('/', (req, res) => res.download('./file.pdf'))
app.listen(3000, () => console.log('Server ready'))

You can set the file to be sent with a custom filename:

18

res.download('./file.pdf', 'user-facing-filename.pdf')

This method provides a callback function which you can use to execute code
once the file has been sent:

res.download('./file.pdf', 'user-facing-filename.pdf', (err) => {
 if (err) {
 //handle error
 return
 } else {
 //do something
 }
})

15. Sessions
By default Express requests are sequential and no request can be linked to
each other. There is no way to know if this request comes from a client that
already performed a request previously.

Users cannot be identified unless using some kind of mechanism that makes
it possible.

That's what sessions are.

When implemented, every user of your API or website will be assigned a
unique session, and this allows you to store the user state.

We'll use the express-session module, which is maintained by the Express
team.

You can install it using

npm install express-session

and once you're done, you can instantiate it in your application with

19

const session = require('express-session')

This is a middleware, so you install it in Express using

const express = require('express')
const session = require('express-session')

const app = express()
app.use(session({
 'secret': '343ji43j4n3jn4jk3n'
}))

After this is done, all the requests to the app routes are now using sessions.

 secret is the only required parameter, but there are many more you can
use. It should be a randomly unique string for your application.

The session is attached to the request, so you can access it using
 req.session here:

app.get('/', (req, res, next) => {
 // req.session
}

This object can be used to get data out of the session, and also to set data:

req.session.name = 'Flavio'
console.log(req.session.name) // 'Flavio'

This data is serialized as JSON when stored, so you are safe to use nested
objects.

You can use sessions to communicate data to middleware that's executed
later, or to retrieve it later on, on subsequent requests.

Where is the session data stored? It depends on how you set up the express-
session module.

file:///private/var/folders/ms/tlnhwx8s3nx_09n161bgc6580000gn/json

20

It can store session data in

memory, not meant for production
a database like MySQL or Mongo
a memory cache like Redis or Memcached

There is a big list of 3rd packages that implement a wide variety of
different compatible caching stores in
https://github.com/expressjs/session

All solutions store the session id in a cookie, and keep the data server-side.
The client will receive the session id in a cookie, and will send it along with
every HTTP request.

We'll reference that server-side to associate the session id with the data
stored locally.

Memory is the default, it requires no special setup on your part, it's the
simplest thing but it's meant only for development purposes.

The best choice is a memory cache like Redis, for which you need to setup its
own infrastructure.

Another popular package to manage sessions in Express is cookie-session ,
which has a big difference: it stores data client-side in the cookie. I do not
recommend doing that because storing data in cookies means that it's stored
client-side, and sent back and forth in every single request made by the user.
It's also limited in size, as it can only store 4 kilobytes of data. Cookies also
need to be secured, but by default they are not, since secure Cookies are
possible on HTTPS sites and you need to configure them if you have proxies.

16. Validating input
Let's see how to validate any data coming in as input in your Express
endpoints.

https://github.com/expressjs/session

21

Say you have a POST endpoint that accepts the name, email and age
parameters:

const express = require('express')
const app = express()

app.use(express.json())

app.post('/form', (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

How do you perform server-side validation on those results to make sure:

name is a string of at least 3 characters?
email is a real email?
age is a number, between 0 and 110?

The best way to handle validation on any kind of input coming from outside
in Express is by using the express-validator package:

npm install express-validator

You require the check and validationResult objects from the package:

const { check, validationResult } = require('express-validator');

We pass an array of check() calls as the second argument of the post()
call. Every check() call accepts the parameter name as argument. Then we
call validationResult() to verify there were no validation errors. If there are
any, we tell them to the client:

https://express-validator.github.io/

22

app.post('/form', [
 check('name').isLength({ min: 3 }),
 check('email').isEmail(),
 check('age').isNumeric()
], (req, res) => {
 const errors = validationResult(req)
 if (!errors.isEmpty()) {
 return res.status(422).json({ errors: errors.array() })
 }

 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

Notice I used

 isLength()

 isEmail()

 isNumeric()

There are many more of these methods, all coming from validator.js,
including:

 contains() , check if value contains the specified value
 equals() , check if value equals the specified value
 isAlpha()

 isAlphanumeric()

 isAscii()

 isBase64()

 isBoolean()

 isCurrency()

 isDecimal()

 isEmpty()

 isFQDN() , is a fully qualified domain name?
 isFloat()

 isHash()

 isHexColor()

https://github.com/chriso/validator.js#validators

23

 isIP()

 isIn() , check if the value is in an array of allowed values
 isInt()

 isJSON()

 isLatLong()

 isLength()

 isLowercase()

 isMobilePhone()

 isNumeric()

 isPostalCode()

 isURL()

 isUppercase()

 isWhitelisted() , checks the input against a whitelist of allowed
characters

You can validate the input against a regular expression using matches() .

Dates can be checked using

 isAfter() , check if the entered date is after the one you pass
 isBefore() , check if the entered date is before the one you pass
 isISO8601()

 isRFC3339()

For exact details on how to use those validators, refer to
https://github.com/chriso/validator.js#validators.

All those checks can be combined by piping them:

check('name')
 .isAlpha()
 .isLength({ min: 10 })

If there is any error, the server automatically sends a response to
communicate the error. For example if the email is not valid, this is what will
be returned:

https://github.com/chriso/validator.js#validators

24

{
 "errors": [{
 "location": "body",
 "msg": "Invalid value",
 "param": "email"
 }]
}

This default error can be overridden for each check you perform, using
 withMessage() :

check('name')
 .isAlpha()
 .withMessage('Must be only alphabetical chars')
 .isLength({ min: 10 })
 .withMessage('Must be at least 10 chars long')

What if you want to write your own special, custom validator? You can use
the custom validator.

In the callback function you can reject the validation either by throwing an
exception, or by returning a rejected promise:

app.post('/form', [
 check('name').isLength({ min: 3 }),
 check('email').custom(email => {
 if (alreadyHaveEmail(email)) {
 throw new Error('Email already registered')
 }
 }),
 check('age').isNumeric()
], (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

The custom validator:

25

check('email').custom(email => {
 if (alreadyHaveEmail(email)) {
 throw new Error('Email already registered')
 }
})

can be rewritten as

check('email').custom(email => {
 if (alreadyHaveEmail(email)) {
 return Promise.reject('Email already registered')
 }
})

17. Sanitizing input
You've seen how to validate input that comes from the outside world to your
Express app.

There's one thing you quickly learn when you run a public-facing server:
never trust the input.

Even if you sanitize and make sure that people can't enter weird things using
client-side code, you'll still be subject to people using tools (even just the
browser devtools) to POST directly to your endpoints.

Or bots trying every possible combination of exploit known to humans.

What you need to do is sanitizing your input.

The express-validator package you already use to validate input can also
conveniently used to perform sanitization.

Say you have a POST endpoint that accepts the name, email and age
parameters:

https://express-validator.github.io/

26

const express = require('express')
const app = express()

app.use(express.json())

app.post('/form', (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

You might validate it using:

const express = require('express')
const app = express()

app.use(express.json())

app.post('/form', [
 check('name').isLength({ min: 3 }),
 check('email').isEmail(),
 check('age').isNumeric()
], (req, res) => {
 const name = req.body.name
 const email = req.body.email
 const age = req.body.age
})

You can add sanitization by piping the sanitization methods after the
validation ones:

app.post('/form', [
 check('name').isLength({ min: 3 }).trim().escape(),
 check('email').isEmail().normalizeEmail(),
 check('age').isNumeric().trim().escape()
], (req, res) => {
 //...
})

Here I used the methods:

27

 trim() trims characters (whitespace by default) at the beginning and at
the end of a string
 escape() replaces < , > , & , ' , " and / with their corresponding
HTML entities
 normalizeEmail() canonicalizes an email address. Accepts several
options to lowercase email addresses or subaddresses (e.g.
 flavio+newsletters@gmail.com)

Other sanitization methods:

 blacklist() remove characters that appear in the blacklist
 whitelist() remove characters that do not appear in the whitelist
 unescape() replaces HTML encoded entities with < , > , & , ' , "
and /
 ltrim() like trim(), but only trims characters at the start of the string
 rtrim() like trim(), but only trims characters at the end of the string
 stripLow() remove ASCII control characters, which are normally
invisible

Force conversion to a format:

 toBoolean() convert the input string to a boolean. Everything except for
'0', 'false' and '' returns true. In strict mode only '1' and 'true' return true
 toDate() convert the input string to a date, or null if the input is not a
date
 toFloat() convert the input string to a float, or NaN if the input is not a
float
 toInt() convert the input string to an integer, or NaN if the input is not
an integer

Like with custom validators, you can create a custom sanitizer.

In the callback function you just return the sanitized value:

28

const sanitizeValue = value => {
 //sanitize...
}

app.post('/form', [
 check('value').customSanitizer(value => {
 return sanitizeValue(value)
 }),
], (req, res) => {
 const value = req.body.value
})

18. Handling forms
This is an example of an HTML form:

<form method="POST" action="/submit-form">
 <input type="text" name="username" />
 <input type="submit" />
</form>

When the user presses the submit button, the browser will automatically
make a POST request to the /submit-form URL on the same origin of the
page. The browser sends the data contained, encoded as application/x-www-
form-urlencoded . In this particular example, the form data contains the
 username input field value.

Forms can also send data using the GET method, but the vast majority of the
forms you'll build will use POST .

The form data will be sent in the POST request body.

To extract it, you will need to use the express.urlencoded() middleware:

29

const express = require('express')
const app = express()

app.use(express.urlencoded({
 extended: true
}))

Now, you need to create a POST endpoint on the /submit-form route, and
any data will be available on Request.body :

app.post('/submit-form', (req, res) => {
 const username = req.body.username
 //...
 res.end()
})

Don't forget to validate the data before using it, using express-validator .

19. Handling file uploads in forms
This is an example of an HTML form that allows a user to upload a file:

Don't forget to add enctype="multipart/form-data" to the form, or files
won't be uploaded

When the user press the submit button, the browser will automatically make
a POST request to the /submit-form URL on the same origin of the page.
The browser sends the data contained, not encoded as as a normal form
 application/x-www-form-urlencoded , but as multipart/form-data .

<form method="POST" action="/submit-form" enctype="multipart/form-data">
 <input type="file" name="document" />
 <input type="submit" />
</form>

30

Server-side, handling multipart data can be tricky and error prone, so we are
going to use a utility library called formidable. Here's the GitHub repo, it
has over 4000 stars and is well-maintained.

You can install it using:

npm install formidable

Then include it in your Node.js file:

const express = require('express')
const app = express()
const formidable = require('formidable')

Now, in the POST endpoint on the /submit-form route, we instantiate a new
Formidable form using formidable.IncomingForm() :

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm()
})

After doing so, we need to be able to parse the form. We can do so
synchronously by providing a callback, which means all files are processed,
and once formidable is done, it makes them available:

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm().parse(req, (err, fields, files) => {
 if (err) {
 console.error('Error', err)
 throw err
 }
 console.log('Fields', fields)
 console.log('Files', files)
 for (const file of Object.entries(files)) {
 console.log(file)
 }
 })
})

https://github.com/felixge/node-formidable

31

Or, you can use events instead of a callback. For example, to be notified when
each file is parsed, or other events such as completion of file processing,
receiving a non-file field, or if an error occurred:

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm().parse(req)
 .on('field', (name, field) => {
 console.log('Field', name, field)
 })
 .on('file', (name, file) => {
 console.log('Uploaded file', name, file)
 })
 .on('aborted', () => {
 console.error('Request aborted by the user')
 })
 .on('error', (err) => {
 console.error('Error', err)
 throw err
 })
 .on('end', () => {
 res.end()
 })
})

Whichever way you choose, you'll get one or more Formidable.File objects,
which give you information about the file uploaded. These are some of the
methods you can call:

 file.size , the file size in bytes
 file.path , the path the file is written to
 file.name , the name of the file
 file.type , the MIME type of the file

The path defaults to the temporary folder and can be modified if you listen
for the fileBegin event:

32

app.post('/submit-form', (req, res) => {
 new formidable.IncomingForm().parse(req)
 .on('fileBegin', (name, file) => {
 file.path = __dirname + '/uploads/' + file.name
 })
 .on('file', (name, file) => {
 console.log('Uploaded file', name, file)
 })
 //...
})

33

Conclusion
Thanks a lot for reading this book.

For more, head over to flaviocopes.com.

Send any feedback, errata or opinions at flavio@flaviocopes.com

https://flaviocopes.com/
mailto:flavio@flaviocopes.com

	Preface
	The Express Handbook
	Conclusion

