

Preface
This book aims to be an introduction to Alpine.js, a very cool library you can use to provide
client-side interactivity to your pages in an easy way.

If you’re unfamiliar with JavaScript or TypeScript, before reading this book I highly
recommend reading my handbooks on those topics.

This book was published in late 2024.

Legal
Flavio Copes, 2024. All rights reserved.

Downloaded from flaviocopes.com.

No part of this book may be reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher.

The information in this book is for educational and informational purposes only and is not
intended as legal, financial, or other professional advice. The author and publisher make no
representations as to the accuracy, completeness, suitability, or validity of any information in
this book and will not be liable for any errors, omissions, or delays in this information or any
losses, injuries, or damages arising from its use.

This book is provided free of charge to the newsletter subscribers of Flavio Copes. It is for
personal use only. Redistribution, resale, or any commercial use of this book or any portion
of it is strictly prohibited without the prior written permission of the author.

If you wish to share a portion of this book, please provide proper attribution by crediting
Flavio Copes and including a link to flaviocopes.com.

Introduction
Alpine is a lightweight frontend library that I've used with a lot of happiness, specifically to
add client-side interactivity to a page.

Things like "if I click this button, show this modal" or "close the modal if I click outside of it",
which are always kind of unfriendly to do with vanilla JavaScript and DOM APIs. Not hard,
but I have to think a bit about how to do some things, while with Alpine, it's very
straightforward.

Compared to most UI libraries you see these days, like React, Svelte, Vue, Angular, and so
on, Alpine is A LOT simpler, and it's 100% focused on so-called "JavaScript sprinkles", which
are little bits of interactivity.

https://flaviocopes.com/books/
https://flaviocopes.com/
http://flaviocopes.com/
af://h1-1
af://h1-2
af://h1-3

As opposed to taking control of the entire UI like most of those bigger frameworks tend to do
(although you can also use them for tiny portions of a web page).

Alpine is 100% focused on this, and it's very good at it.

In this book I'll explain the basics of Alpine, so you can learn the fundamentals of this super
handy library.

To learn more, the official documentation is the best place to go: https://alpinejs.dev/start-
here

Installing Alpine
Installing Alpine can be as simple as including the script tag in your HTML page:

Or, you can add it as a JavaScript module into your project:

And you can initialize it with

You can choose the way you prefer.

Adding the script tag is the simplest as you automatically have the Alpine object available in
the global object, and already initialized (you don't have to manually call Alpine.start())

The basics of Alpine
The basics of Alpine are pretty straightforward: you define some data inside your markup
using the x-data attribute, and then you can show this data to the users using the x-text
attribute on a tag, like this:

<script defer src="

<https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js>"></script>

npm install alpinejs

import Alpine from 'alpinejs'

window.Alpine = Alpine

Alpine.start()

<div x-data="{ name: 'Joe' }">

</div>

https://alpinejs.dev/start-here
af://h1-4
af://h1-5

Using boolean state and the x-show attribute you can easily hide or show some portions of
the UI:

<div x-data="{ name: 'Joe' }">

 <p x-text="name"></p>

</div>

<div x-data="{ showThis: false }">

 <p x-show="showThis">Show this</p>

</div>

If you set the showThis variable to false , nothing will be displayed:

You can use x-show="!showThis" to do the opposite:

One thing to the data is only available on child elements of the tag with the x-data
attribute.

For example in this case the second p tag doesn't have access to the showThis value, and
it's shown regardless of its value defined in the div (it's isolated):

Events

af://h1-6

The User Interface we define inside the browser is event-based. People do things on the
page, like clicking buttons, and we react to those events with an event handler to do
something.

You can use the @click attribute to listen for clicks:

Click the button, and showThis turns to true , and the p tag is displayed:

<button @click="showThis = true">Show</button>

@click is a shorthand for x-on:click .

The x-on attribute lets you define any kind of event, but I like the shorthand form more.

We have others like

We can use modifiers on the event listener to change the behavior.

For example it's common sometimes to call event.preventDefault() when listening on a
form submit event, to prevent the browser from sending the data to the server.

Something like:

@keyup

@keydown

@dblclick

@submit

...

<form>...</form>

<script>

const form = document.querySelector('form')

form.addEventListener('submit', event => {

 event.preventDefault()

 //..client-side logic...

 showThis = true

With Alpine we would write

Much simpler, right?

I've also seen it used as @click.prevent to prevent the default behavior on link clicks.

One modifier I used was @click.outside to hide a modal when clicking outside of it.

I used something like this:

to the div containing the modal.

Another one I used was @keydown.enter to detect the "enter key" being pressed.

Another useful modifier is .window . Using it we can bind an event listener to the window,
super useful for example to detect pressing the esc key to close a modal window:

Without .window , you wouldn't be able to detect the keypress because unless the user is
focused on an input field, key press events are sent to the global window.

Defining data
We've seen how to define data using x-data :

})

</script>

<form @submit.prevent="showThis = true">

 ...

<div x-show="showModal" @click.outside='showModal = false'>

 the modal content

</div>

<div

 keydown.escape.window="showModalAddTask = false">

 ...

</div>

x-on:

<div x-data="{ showThis: false }">

 <p x-show="showThis">Show this</p>

</div>

af://h1-7

The string passed to x-data contains a JavaScript object, and we can add more variables
into it:

But it's kind of difficult to write JavaScript in this way, especially because it's not syntax
highlighted and being inside a string it's easy to do errors and the editor cannot detect them
for us.

You can do this instead:

and then you associate mydata to an HTML tag:

and in its children (and on the element itself, if you need) you have access to the variables
defined in mydata :

This is very useful if you need to add methods that you can call when an event occurs, or
when you have more complex data processing.

Simple example, I have a shopping cart and in addition to the data, I have some utility
functions to format this data nicely in my UI:

<div x-data="{ showThis: false, name: '' }">

 <p x-show="showThis">Show this</p>

</div>

Alpine.data('mydata', () => ({

 showThis: false,

 name: ''

}))

<div x-data="mydata">

</div>

<div x-data="mydata">

 <p x-show="showThis">Show this</p>

</div>

Alpine.data('shop', () => ({

 showCartOverlay: false,

 cart: JSON.parse(localStorage.getItem('cart')) || [],

 subtotal: 0,

 subtotalFormatted() {

…you got the idea.

Now I can use functions like this:

It's much cleaner than adding all those functions inside x-data .

Looping
If you store some x-data variable as an array, you can loop through it and render a
template multiple times using x-for , like this:

The caveat is that x-for must be put on a <template> tag, and this must have a single
child element (for example, wrap all tags in a div if you have more).

 return this.formatAsPrice(this.subtotal)

 },

 formatAsPrice(price) {

 return Intl.NumberFormat('en-US', { style: 'currency', currency:

'USD' }).format(price)

 },

 recalculateSubtotal() {

 this.subtotal = 0

 this.cart.map((item) => (this.subtotal = (parseInt(this.subtotal *

100) + parseInt(item.price * 100)) / 100))

 }

})

<div x-data="shop">

 ...

 <p class='ml-4' x-text='formatAsPrice(item.price)'></p>

</div>

<ul x-data="shop">

 <template x-for='(item, index) in cart'>

 <p x-text='item.title'></p>

 <p x-text='formatAsPrice(item.price)'></p>

 <button @click=`removeFromCart(index)`>

 Remove

 </button>

 </template>

af://h1-8

The <template> tag is a special tag used to hold content that's not rendered immediately
on the page, but rendered using JavaScript (see MDN).

Watching variables change
You can watch/listen for changes in an Alpine data variable, and run a function when a
change happens.

You do so in the x-init attribute which contains code that's run when Alpine is initialized.

For example I have some HTML that belongs to a modal, and any time this modal is opened
I want to clear the name data, so the input field is always empty:

Stores
Stores are a state management solution you can use to create a centralized data "storage"
for your UI.

To avoid confusion, data stored in a store is not "stored" anywhere. When you reload the
page, the store is reinitialized.

But I found stores very useful for one particular thing: accessing a data variable using
JavaScript in a clean way.

In my case I had to hide a modal after an htmx HTTP POST request.

Something like this:

<div x-data="shop">

 ...

 <p class='ml-4' x-text='formatAsPrice(item.price)'></p>

</div>

<div

 x-data="{ name: '' }"

 x-init="$watch('showModal', () => { name = '' })">

 <form>

 <input name="name" x-model="name" />

 </form>

</div>

document.addEventListener('htmx:afterRequest', (event) => {

 showModal = false

})

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template
af://h1-9
af://h1-10

But since showModal was defined as x-data="{ showModal: false }" I had no way to
access it using JavaScript.

So instead of initializing that variable with x-data , I created a store:

And then I was able to access (and edit) this variable using:

document.addEventListener('alpine:init', () => {

 Alpine.store('mystore', {

 showModal: false,

 })

})

document.addEventListener('htmx:afterRequest', (event) => {

 Alpine.store('mystore').showModal = false

})

	Preface
	Legal
	Introduction
	Installing Alpine
	The basics of Alpine
	Events
	Defining data
	Looping
	Watching variables change
	Stores

